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What is it?

Parallel computing is a type of computation in which many 
calculations or the execution of processes are carried out 
simultaneously

Large problems can often be divided into smaller ones, 
which can then be solved at the same time

In the physical sciences community we typically have two 
types of parallelism

1. Data Parallelism
2. Task Parallelism

https://en.wikipedia.org/wiki/Parallel_computing



Types of Parallelization

Job Arrays
• Create a list of independent runs of a program
• Be careful with too much file IO

OpenMP – Open Multi Processing
• Shared Memory System 
• Very easy to parallelize a loop

MPI – Message Passing Interface
• Distributed Memory Systems
• More difficult to parallelize
• Requires a change in fundamental programming



Architecture – A pre-requisite for parallel programming 
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Serial Programming – i.e. only use one thread
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Serial Programming – i.e. only use one thread
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OpenMP Programming – i.e. use all threads on single machine
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MPI Programming – Distributed Memory
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MPI Programming – Distributed Memory - Serial IO
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• Each core gets its own exclusive chunk of RAM

• Communication is needed between threads for them to see each others memory

• All threads can see the hard drive but through one doorway
i.e. the file server
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MPI Programming – Shared Memory - Serial IO

RAM

• All cores can see entire RAM

• All threads can see the hard drive but through one doorway
i.e. the file server
This can be a major bottleneck in parallel programs
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MPI Programming – Shared Memory – Parallel IO
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MPI Programming – Distributed Memory – Parallel IO
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MPI + OpenMP – Hybrid Parallelization – Parallel IO 
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• Each core sees all RAM on its node

• All threads can see the hard drive and read/write in parallel
i.e. Lustre file server

• Minimize memory duplication
• Maximize compute
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MPI Programming – Distributed Memory – Parallel IO –OffLoading
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• Each core gets its own exclusive chunk of RAM

• Off load to GPU or Xeon Phi enabled algorithms for rapid processing

• All threads can see the hard drive and read/write in parallel
i.e. Lustre file server
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Is parallel programming the be-all-and-end-all?

https://wrathematics.github.io/RparallelGuide/



https://wrathematics.github.io/RparallelGuide/

Not so fast



https://wrathematics.github.io/RparallelGuide/

• Thread Safe?

• Race Conditions?

• Too much file IO?

• Bad domain decomposition?

• Poorly balanced?

• Too much communication?

Key take-home

If the library exists – use it!

You have to be careful
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1. Too much time!
• I have a lot of data that takes too much time to read/write

• Just one of my iterations takes hours to days

• Multiple iterations take days to weeks!

When should we do it?
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1. Too much time!
• I have a lot of data that takes too much time to read/write

• Just one of my iterations takes hours to days

• Multiple iterations take days to weeks!

1. Not enough memory!
• I have a lot of data that takes up too much RAM

• I have to solve large systems of (non)linear equations

• I have to perform large matrix-vector or matrix-matrix ops

2. Too much time AND not enough memory!!

When should we do it?



1. We have poorly written code
• Trying to navigate Spaghetti Junction in serial is hard enough

When NOT to do it?

http://www.whereitis.co.uk/swindon-junctions/magic-roundabout-a-masterpi.html

http://urbangreens.tumblr.com/post/80761299/parc-nus-de-la-trinitat-barcelona-this



1. We have poorly written code

• Trying to navigate Spaghetti Junction in serial is hard enough

2. We have code that uses slow algorithms that may be replaced

Simple Example: Finding the nearest neighbour in a point cloud

a. Brute Force is an O(N2) Operation

- For each point, compute the distance to all other points

- Choose the point with minimum distance

b. Build a KdTree in O(n Log n), and search in O(Log n)

For 1,000,000 points in space, this amounts to

a. 1x1012

b. 13x106 + 13

When NOT to do it?



1. We have poorly written code
• Trying to navigate Spaghetti Junction in serial is hard enough

2. We have code that uses slow algorithms that may be replaced

3. Our problem size is too small

• We can still parallelize the small problem

• May be slower because of 
• Communication
• Overhead setting up the parallel region

When NOT to do it?
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1. Numerical solution of Partial Differential Equations (PDE)
• Weather
• Fluid flow
• Nuclear 

2. Bayesian Inversion

3. Lidar pointcloud processing

4. Raster image processing

5. Machine Learning

6. N-body universe simulations

Approaches / Types of problems
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