
PARALLELISM
• What is it?

• When should you do it?

• Approaches / Type of problems

Leon Foks



What is it?

Parallel computing is a type of computation in which many 
calculations or the execution of processes are carried out 
simultaneously

Large problems can often be divided into smaller ones, 
which can then be solved at the same time

In the physical sciences community we typically have two 
types of parallelism

1. Data Parallelism
2. Task Parallelism

https://en.wikipedia.org/wiki/Parallel_computing



Types of Parallelization

Job Arrays
• Create a list of independent runs of a program
• Be careful with too much file IO

OpenMP – Open Multi Processing
• Shared Memory System 
• Very easy to parallelize a loop

MPI – Message Passing Interface
• Distributed Memory Systems
• More difficult to parallelize
• Requires a change in fundamental programming



Architecture – A pre-requisite for parallel programming 

Central Processing Unit
Intel i7?

Random Access Memory

A Single Computer 

Core Core CoreCore

Hard Disk / Solid State Drive

RAM

File Storage



Serial Programming – i.e. only use one thread

Core Core CoreCore

RAM

Hard Disk / Solid State Drive

Central Processing Unit

Random Access Memory

File Storage



Serial Programming – i.e. only use one thread

Core Core CoreCore

RAM

Hard Disk / Solid State Drive

Central Processing Unit

Random Access Memory

File Storage

https://pbs.twimg.com/media/Ce0Ht9vWAAUKOK1.jpg:large



OpenMP Programming – i.e. use all threads on single machine

Core Core CoreCore

Hard Disk / Solid State Drive

RAM

4 cores or 8 threads?

Random Access Memory

File Storage



MPI Programming – Distributed Memory

Core Core CoreCore

RAM

Hard Disk / Solid State Drive

Node

GPU

Xeon 
Phi



MPI Programming – Distributed Memory - Serial IO

Core Core CoreCore

RAM RAM RAM RAM

Core Core CoreCore

RAM RAM RAM RAM

Core Core CoreCore

RAM RAM RAM RAM

Core Core CoreCore

RAM RAM RAM RAM

Core Core CoreCore Core Core CoreCore Core Core CoreCoreCore Core CoreCore

• Each core gets its own exclusive chunk of RAM

• Communication is needed between threads for them to see each others memory

• All threads can see the hard drive but through one doorway
i.e. the file server

Hard Disk / Solid State Drive

RAM RAM RAM RAM RAM RAM RAM RAM RAM RAM RAM RAMRAM RAM RAM RAM



MPI Programming – Shared Memory - Serial IO

RAM

• All cores can see entire RAM

• All threads can see the hard drive but through one doorway
i.e. the file server
This can be a major bottleneck in parallel programs

RAM

Hard Disk / Solid State Drive

Core Core CoreCore Core Core CoreCore Core Core CoreCoreCore Core CoreCore

Core Core CoreCore Core Core CoreCore Core Core CoreCoreCore Core CoreCore



MPI Programming – Shared Memory – Parallel IO

Hard Disk / Solid State Drive

RAM

• All cores can see entire RAM

• All threads can see the hard drive and read/write in parallel
i.e. Lustre file server

RAM

Core Core CoreCore Core Core CoreCore Core Core CoreCoreCore Core CoreCore

Core Core CoreCore Core Core CoreCore Core Core CoreCoreCore Core CoreCore



MPI Programming – Distributed Memory – Parallel IO

Core Core CoreCore

RAM RAM RAM RAM

Core Core CoreCore

RAM RAM RAM RAM

Core Core CoreCore

RAM RAM RAM RAM

Core Core CoreCore

RAM RAM RAM RAM

Core Core CoreCore Core Core CoreCore Core Core CoreCoreCore Core CoreCore

• Each core gets its own exclusive chunk of RAM

• Communication is needed between threads for them to see each others memory

• All threads can see the hard drive and read/write in parallel
i.e. Lustre file server

Hard Disk / Solid State Drive

RAM RAM RAM RAM RAM RAM RAM RAM RAM RAM RAM RAMRAM RAM RAM RAM



MPI + OpenMP – Hybrid Parallelization – Parallel IO 

Core Core CoreCore

RAM

Core Core CoreCore Core Core CoreCoreCore Core CoreCore

Core Core CoreCore Core Core CoreCore Core Core CoreCoreCore Core CoreCore

• Each core sees all RAM on its node

• All threads can see the hard drive and read/write in parallel
i.e. Lustre file server

• Minimize memory duplication
• Maximize compute

Hard Disk / Solid State Drive

RAM RAM RAM

RAM RAM RAM RAM



MPI Programming – Distributed Memory – Parallel IO –OffLoading

Core Core CoreCore

RAM RAM RAM RAM

Core Core CoreCore

RAM RAM RAM RAM

Core Core CoreCore

RAM RAM RAM RAM

Core Core CoreCore

RAM RAM RAM RAM

Core Core CoreCore Core Core CoreCore Core Core CoreCoreCore Core CoreCore

• Each core gets its own exclusive chunk of RAM

• Off load to GPU or Xeon Phi enabled algorithms for rapid processing

• All threads can see the hard drive and read/write in parallel
i.e. Lustre file server

Hard Disk / Solid State Drive

RAM RAM RAM RAM RAM RAM RAM RAM RAM RAM RAM RAMRAM RAM RAM RAM

GPU
PHI

GPU
PHI

GPU
PHI

GPU
PHI

GPU
PHI

GPU
PHI

GPU
PHI

GPU
PHI

GPU
PHI

GPU
PHI

GPU
PHI

GPU
PHI

GPU
PHI

GPU
PHI

GPU
PHI

GPU
PHI



Is parallel programming the be-all-and-end-all?

https://wrathematics.github.io/RparallelGuide/



https://wrathematics.github.io/RparallelGuide/

Not so fast



https://wrathematics.github.io/RparallelGuide/

• Thread Safe?

• Race Conditions?

• Too much file IO?

• Bad domain decomposition?

• Poorly balanced?

• Too much communication?

Key take-home

If the library exists – use it!

You have to be careful



PARALLELISM
• What is it?

• When should you do it?

• Approaches / Type of problems



1. Too much time!
• I have a lot of data that takes too much time to read/write

• Just one of my iterations takes hours to days

• Multiple iterations take days to weeks!

When should we do it?



1. Too much time!
• I have a lot of data that takes too much time to read/write

• Just one of my iterations takes hours to days

• Multiple iterations take days to weeks!

1. Not enough memory!
• I have a lot of data that takes up too much RAM

• I have to solve large systems of (non)linear equations

• I have to perform large matrix-vector or matrix-matrix ops

When should we do it?



1. Too much time!
• I have a lot of data that takes too much time to read/write

• Just one of my iterations takes hours to days

• Multiple iterations take days to weeks!

1. Not enough memory!
• I have a lot of data that takes up too much RAM

• I have to solve large systems of (non)linear equations

• I have to perform large matrix-vector or matrix-matrix ops

2. Too much time AND not enough memory!!

When should we do it?



1. We have poorly written code
• Trying to navigate Spaghetti Junction in serial is hard enough

When NOT to do it?

http://www.whereitis.co.uk/swindon-junctions/magic-roundabout-a-masterpi.html

http://urbangreens.tumblr.com/post/80761299/parc-nus-de-la-trinitat-barcelona-this



1. We have poorly written code

• Trying to navigate Spaghetti Junction in serial is hard enough

2. We have code that uses slow algorithms that may be replaced

Simple Example: Finding the nearest neighbour in a point cloud

a. Brute Force is an O(N2) Operation

- For each point, compute the distance to all other points

- Choose the point with minimum distance

b. Build a KdTree in O(n Log n), and search in O(Log n)

For 1,000,000 points in space, this amounts to

a. 1x1012

b. 13x106 + 13

When NOT to do it?



1. We have poorly written code
• Trying to navigate Spaghetti Junction in serial is hard enough

2. We have code that uses slow algorithms that may be replaced

3. Our problem size is too small

• We can still parallelize the small problem

• May be slower because of 
• Communication
• Overhead setting up the parallel region

When NOT to do it?



PARALLELISM
• What is it?

• When should you do it?

• Approaches / Type of problems



1. Numerical solution of Partial Differential Equations (PDE)
• Weather
• Fluid flow
• Nuclear 

2. Bayesian Inversion

3. Lidar pointcloud processing

4. Raster image processing

5. Machine Learning

6. N-body universe simulations

Approaches / Types of problems



QUESTIONS?
Leon Foks
nfoks@contractor.usgs.gov

U.S. Department of the Interior
U.S. Geological Survey


