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Abstract
The legacy soil survey geographic databases for the United States have been processed to match the standards of the 
GlobalSoilMap. The source data are primarily from the detailed Soil Survey Geographic (SSURGO) dataset, and areas that 
are not yet mapped by SSURGO are filled from the General Soil Map (STATSGO2). These legacy databases were 
developed by the U.S. National Cooperative Soil Survey under the leadership of the U.S. Department of Agriculture, 
Natural Resources Conservation Service. The source data structure includes map units, which are delineated spatially on 
a map, and components, which have attribute information representing a percentage of the map unit but are not mapped. 
Although the ‘representative value’ for each quantitative attribute was used to calculate the values used for the 
GlobalSoilMap results, the source databases also include ‘low’ and ‘high’ values that can be used to represent the 
uncertainty. Although the standards for coding ‘low’ and ‘high’ values were not well defined, by assuming that they 
represent a prediction interval at the 90% confidence level, it is possible to estimate the uncertainty for each component. 
Each component may have a distinct range of ‘low’ and ‘high’ values, but the goal is to have an uncertainty measure 
representing the map unit.   I developed a method to create 1000 ‘pseudo-observations’ for the map unit, distributed 
according to the prediction interval for each component, from which it is possible to determine the 90% or 95% prediction 
interval for the map unit. This method makes it possible to merge component records with differing prediction intervals 
into a single map unit prediction interval. Not all data records are populated with the ‘low’ and ‘high’ values. For example,
in the attribute representing the percentage of sand, only 115,274 of the 309,916 map units (37%) had both ‘low’ and ‘high’ 
values. The size of the prediction interval at the 90% confidence interval varies considerably for these records. Three 
methods of estimating the prediction interval at the 90% confidence level are discussed in this poster, and illustrated with 
soil organic carbon data as an example for the entire process. The pseudo-observation method is also compared with 
other factors influencing uncertainty: the original scale of mapping and the area represented by the map unit. Providing 
uncertainty estimates will fulfill a requirement of the GlobalSoilMap specifications and enable these data to be 
distributed, leading to improved decision making by farmers and resource managers.

Methods (continued)
Steps in the pseudo-observation method: 
1) Assume an input data prediction interval confidence level (here 90%).
2) Fit a normal curve using the low (_l) and high (_h) values for a component.
3) Select 1000 pseudo-observations to closely approximate the normal curve.
4) Randomly select from the component’s pseudo-observations in proportion to the component percentage (comppct_r).
5) Pool the selections from all the components into a single list of 1000 pseudo-observations, and sort the values.
6) Pick the values at locations 50 and 950 from the sorted list to represent the lower and upper limits of the prediction 

interval at the 90% confidence level (5% of the values are in each tail of the distribution).

The method results in two new map unit level variables for the attribute (for each depth zone): I label these “_90CL_low” 
to represent the lower bound of the prediction interval at the 90% confidence level, and “_90CL_high” to represent the 
upper bound. For example, the map unit level variable for the lower bound of soil organic carbon (soc) in the 0 to 5 cm 
depth zone is labeled “mu_soc_90CL_low_mr_g_gF_000_005” with units of grams of carbon (g) per gram of soil fines (gF). 
Figure 7 shows selection of the prediction interval for a hypothetical map unit.

Hypothetical data:                                                                                                        Results:
component 1   70%                                                                                                       90% CL (see green lines)

low (_l)    1.2                                                                                                     90CL_low    0.23
high (_h)  1.6                                                                                                      90CL_high  1.57

component 2   30%
low (_l)    0.0                                                                                                     95% CL (see blue lines)                
high (_h)  1.2                                                                                                      95CL_low  0.08

95CL_high 1.61

Two more measures that are not reportable as a prediction interval but which influence the uncertainty are the map scale 
(the “projectscale” variable) and the total area of the map unit (km2). 

The following questions have guided the evaluation presented here:
1) How does the pseudo-observation method (_90CL_low) compare the average method (_l) and the low-of-the-low (_ll) 

method (and the same questions for the high values)?
2) Is there a relationship between the size of the prediction interval (_90CL_high minus _90CL_low) and the map scale 

(projectscale)?
3) Is there a relationship between the size of the prediction interval (_90CL_high minus _90CL_low) and the map area 

(km2)?

Results
The soil organic carbon (soc) variable was selected for evaluation here. The plots shown below show that the pseudo-
observation method may provide a wider range of values that the other two methods. It is even possible to get negative 
values, especially if the “low” value coded for a variable was zero, because the method creates a “tail” for the 
distribution. These negative values should be reset to zero.

Comparing (_90CL_low) with (_l) and (_ll)
When plotting the nearly 300,000 map units for the conterminous United States, there are many possible patterns for the results among 
the three methods. The three ways of estimating the lower bound of the prediction interval are compared in Figure 8.

Comparing (_90CL_high minus _90CL_low) with (_hh minus _ll)
The width of the prediction interval (the upper bound minus the lower bound) is compared for two of the methods in Figure 9.

Comparing (_90CL_high minus _90CL_low) with (projectscale) and (km2)
In Figure 10, the width of the prediction interval using the pseudo-observation method is compared with other potential influences on 
overall uncertainty, the map scale (projectscale) and the land area represented by the map unit in square kilometers (km2).

Discussion
The pseudo-observation method is likely more robust for representing complex map units with greatly contrasting soil 
properties. For example, if there are two contrasting components (e.g., #1 with 95% of the land area and a deep organic 
soil and #2 with 5% of the area in a very sandy (low carbon) soil, then the pseudo-observation method may give more 
appropriate prediction interval. 

Conclusions
1) With insufficient real samples on a nationwide basis, it is not possible to rigorously test the various methods of 

representing uncertainty.
2) The new method using pseudo-observations has been demonstrated for SOC, and can be applied to the other 

GlobalSoilMap variables.
3) Future research can investigate how these measures and additional measures such as map scale and map unit area 

could be synthesized to create an enhanced method for characterizing uncertainty.
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Introduction
A map of the soil organic carbon in the Conterminous United States is shown in Figure 1. Figure 2 shows that the 
distribution is non-linear, such that the more arid half of the land area has about 20% of the SOC, whereas the wetter half 
of the land area has about 80% of the SOC. 

The SSURGO and STATSGO2 data structure
The data structure for SSURGO and STATSGO2 is shown in Figure 3. An example of the Organic Matter (OM) and bulk 
density data used for calculating SOC is shown for one map unit in Figure 4.

The analysis works from the chorizon table up through the component level, to calculate a measure for each variable at 
the mapunit level. This is done for each GlobalSoilMap variable by each depth zone for the low (_l), representative (_r), 
and high (_h) values. Values are weighted by the mass of soil fines and the component percentage (comppct_r) when 
accumulating to the tables higher in the hierarchy.

Methods
Three methods of representing uncertainty are compared in this poster:

1) The limits of the prediction interval are estimated using a low (_l) and high (_h) value calculated as a weighted 
average of the low and high values of each of the components for which low and high estimates were available. The 
mass of soil fines is used as the weighting factor.

2) The limits of the prediction interval are estimated by taking the “low of the low” (_ll) and the “high of the high” (_hh) 
among all components in the map unit. This method was found to be reasonable based on a sample of map units by 
Helmick et al. (2014). The method selects the minimum from among the low values of all components (_ll) and the 
maximum from among the high values all components (_hh).

3) The method of “pseudo-observations” proposed here. 

The pseudo-observation method
The term “pseudo-observation” is used because we do not have thousands of real observations for each map unit. A 
normal distribution is fit to the low (_l) and high (_h) values of each variable, using the assumption that these represent 
the prediction interval limits at a 90% confidence level. Figure 5 shows how the area under the curve can be divided into 
zones with identifiable proportions of the population of observations. 

Steps in the pseudo-observation method:
1) Assume an input data prediction interval confidence 
level (here 90%).
2) Fit a normal curve using the low (_l) and high (_h) 
values for a component.
3) Select 1000 pseudo-observations to closely 
approximate the normal curve.
4) Randomly select from the component’s pseudo-
observations in proportion to the component percentage 
(comppct_r).
5) Pool the selections from all the components into a 
single list of 1000 pseudo-observations, and sort the 
values.
6) Pick the values at locations 50 and 950 from the sorted 
list to represent the lower and upper limits of the 
prediction interval at the 90% confidence level (5% of the 
values are in each tail of the distribution)

Figure 6 shows three alternative assumptions for the confidence level of the input data, although only the 90% confidence 
level was used in this study.

Figure 6.  (a) A 90% confidence level is assumed for the input SSURGO or STATSGO2 data. The green curve represents the fit of a normal (Gaussian) curve to 
a hypothetical data record with a prediction interval “low” value of 1.2 and a “high” value of 1.6. (b) The distribution (blue curve) from the same points, 
assuming that the source data low and high prediction interval limits represent a 95% confidence level. (c) Similarly, assuming a 99% input data confidencde
level. The scale of the vertical axis is arbitrary. The 90% assumption is used for the remainder of this poster (as in (a) ).

Figure 3. The hierarchical structure of attribute data in 
SSURGO and STATSGO2. Each map unit can have one or more 
components representing the distinct soils present but not 
spatially represented on the map, with the proportion of land 
area represented as a component percentage. Each 
component can have zero or more horizons, representing 
changes in soil properties with depth in the profile.

Figure 2. The non-linear distribution of soil organic carbon in the 
conterminous United States. Wetlands are represented at the right-edge 
of the curve with high carbon densities.

Figure 1. A map of the soil organic carbon in the conterminous United 
States, using SSURGO data where available and filling with STATSGO2 
data in other locations (generally large holdings of government-owned 
land in the Western United States). Units are kilograms of carbon per 
square meter for the total profile, and the plot uses standard deviation 
scaling so extreme values are more evident.

mapunit
mukey cokey comppct_r chkey hzdept_r hzdepb_r om_l om_r om_h dbthirdbar_r

10001 15001 70 17001 0 15 4.00 5.00 6.00 1.10
10001 15001 70 17002 15 30 1.00 1.50 2.00 1.35
10001 15001 70 17003 30 152 0.05 0.06 0.07 1.45
10001 15002 30 17004 0 25 2.00 3.00 3.50 1.30
10001 15002 30 17005 25 75 0.50 0.70 0.90 1.40
10001 15002 30 17006 75 75 NoData NoData NoData NoData bedrock

component chorizon

Figure 4. A hypothetical data record showing information used for the SOC 
calculation for one map unit. Organic matter percentage (om_r) is multiplied by .0058, 
the horizon thickness (cm) and by the bulk density to convert units to grams of 
carbon per square centimeter of soil. For the GlobalSoilMap calculation the mass of 
soil is also calculated and the SOC is represented as g SOC per kilogram of soil fines 
(< 2 mm particle size).

Figure 5. A plot of a normal (Gaussian) distribution, with each 10% 
confidence level shown in red (10% to 80%), the 90% confidence level in 
green, the 95% confidence level in blue, and the 99% confidence level in 
black. Thus, 90% of the area under the curve is between the green lines. 
The scale of the vertical axis is arbitrary.
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Figure 8. The lower bounds are compared between (a) “_l” and “_ll”, (b) “_l” and “_90CL_low”, and (c) “_ll” and “_90CL_low”. The pattern in (c) seems to 
have the closest relationship, so the methods will produce similar results for many map units (the red line is close to the 1:1 line).

Figure 9. The differences between the higher bound and 
the lower bound are compared for “_hh minus_ll” versus 
“_90CL_high minus_90CL_low”.  The results are similar 
with some tendency for the pseudo-observation method 
to produce narrower limits (the red line is below the 1:1 
line). There are also many exceptions where the methods 
produce very different results.

Figure 10. The differences between the higher bound and the lower bound for the pseudo-observation method (Y-axis) are shown according to (a) the 
map scale (projectscale) and (b) the land area of the map unit (km2). Many of the cases of very large areas also have a low difference between the high
and the low, but that could reflect the inherently low carbon values in the Western United States.
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