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Abstract 
Landsat-8 has been operating on-orbit for 5+ years.  Its two sensors, the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS), are continuing to produce high quality data. The OLI has been radiometrically stable at the better than 0.3% level on a band average basis for all but the shortest wavelength (443 nm) band, which has degraded about 1.3% since launch.  All on-board calibration devices continue to perform well and consistently. No gaps in across track coverage exist as 100% operability of the detectors is maintained. The variability over time of detector responsivity within a band relative to the average is better than 0.05% (1 sigma), though there are occasional detectors that jump up to 1.5% in response in the Short Wave InfraRed (SWIR) bands.  Signal-to-Noise performance continues at 2-3x better than requirements, with a small degradation in the 443 nm band commensurate with the loss in sensitivity.  Pre-launch error analysis, combined with the stability of the OLI indicates that the absolute reflectance calibration uncertainty is better than 3%; comparisons to ground measurements and comparisons to other sensors are consistent with this. The Landsat-8 TIRS is similarly radiometrically stable, showing changes of at most 0.3% over the mission. The uncertainty in the absolute calibration as well as the detector to detector variability are largely driven by the stray light response of TIRS.  The current processing corrects most of the stray light effects, resulting in absolute uncertainties of ~1% and reduced striping.  Efforts continue to further reduce the striping.  Noise equivalent delta temperature is about 50 mK at typical temperatures and 100% detector operability is maintained.  Landsat-9 is currently under development with a launch no earlier than December 2020.  The nearly identical OLI-2 and upgraded TIRS-2 sensors have completed integration and are in the process of instrument level performance characterization including spectral, spatial, radiometric and geometric testing.  Component and assembly level measurements of the OLI-2, which include spectral response, radiometric response and stray light indicate comparable performance to OLI.  The first functional tests occurred in July 2018 and spatial performance testing in a vacuum is scheduled for August 2018.  Similarly for TIRS-2, partially integrated instrument level testing indicated spectral and spatial responses comparable to TIRS, with stray light reduced by approximately an order of magnitude from TIRS.	Comment by Cooper, Sandra C. [3]: ??	Comment by Cooper, Sandra C. [4]: Plural?
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INTRODUCTION 
Landsat-8 was launched in February of 2013 with two sensors on-board, the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS).  The OLI has 9 spectral bands in the visible to short wave infrared spectral range and the TIRS has two spectral bands in the long wave infrared spectral range (Table 1).  Landsat-9, scheduled to launch no earlier than December 2020, will have the same sensor complement, now designated OLI-2 and TIRS-2.  The OLI-2 is essentially a carbon copy of OLI; TIRS-2 has some design changes: (1) adding some baffles to the telescope to reduce stray light, (2) changing the design of the scene select mechanism encoder to improve reliability (the encoder on TIRS exhibited some anomalies, resulting in reduced usage and necessitated changes to the operations concept) and (3) increasing the electronics redundancy to meet the requirements for a class B instrument (five year design life).  
OLI/OLI-2
As shown in Figure 1, OLI/OLI-2 are pushbroom four mirror anastigmatic sensors.  Each has ~7000 cross track detectors in its 30 m spectral bands and twice that in the panchromatic band [1]. Each has several built-in capabilities to monitor its stability over the mission, including 3 sets of lamps, 2 deployable diffuser panels and an internal shutter, as well as the capability to image the moon.  These calibration devices allow characterization of: (1) the overall band average radiometric stability, so that any changes can be accounted for in the processing of the data, (2) the individual detector stability relative to the band average, so that flat fielding coefficients can be updated and used in the processing, (3) the detector noise at multiple signal levels, and (4) the individual detector biases for stability monitoring and subtraction from Earth signals during image processing. The moon, in addition to providing a stable source for radiometric monitoring, is useful for characterizing any ghosting in the optical system.  Prior to launch, ground support equipment is used to provide more detailed characterization of the components as well as the assembled instrument, including spectral and spatial response, radiometric linearity, stray light and geometric line of sight.  These characterizations were performed on the Landsat-8 OLI and have started on the Landsat-9 OLI-2. Table 1. Landsat-8 OLI and TIRS spectral bands and nominal performance parameters.  OLI-2 and TIRS-2 will be similar, though OLI-2 will transmit 14 bits per pixel.
Band
Band Designation
Band Edges (nm)
GIFOV (m)
Digitization (transmitted bits)
1
Coastal Aerosol 
435.0 - 451.0
30
12
2
Blue
452.0 – 512.1
30
12
3
Green
532.7 - 590.1
30
12
4
Red
635.9 – 673.3
30
12
5
NIR
850.5 - 878.8
30
12
6
SWIR-1
1566.5 - 1651.2
30
12
7
SWIR-2
2107.4 – 2294.1
30
12
8
Pan
503.3 – 675.7
15
12
9
Cirrus
1363.2 – 1383.6
30
12
10
TIR-1
10602 – 11190
100
12
11
TIR-2
11500 – 12511
100
12


TIRS/TIRS-2
TIRS and TIRS-2 are refractive optic pushbroom Long Wave InfraRed (LWIR) sensors (Figure 2).  Each has ~1900 cross track detectors in each of their two 100 m spectral bands [2]. Each has built-in capabilities to monitor its stability over the mission, including a full aperture temperature controllable blackbody, a view to deep space, a Scene-Select Mechanism (SSM) to allow pointing at the Earth, blackbody or deep space and a capability to image the moon. Like for OLI, these calibration devices allow characterization of: (1) the overall band average radiometric stability, so that any changes can be accounted for in the processing of the data, (2) the individual detector stability relative to the band average, so that flat fielding coefficients can be updated and used in the processing, (3) the detector noise at multiple signal levels, and (4) the individual detector biases for stability monitoring and subtraction from Earth signals during image processing.  Similarly, and this has been critical for TIRS, the lunar imaging capability allows characterizing of the ghosting and stray light of the TIRS optical system.  Prior to launch, ground support equipment is used to provide more detailed characterization of the components as well as the assembled instrument, including spectral and spatial response, radiometric linearity, stray light and geometric line of sight.  These characterizations were performed on the Landsat-8 TIRS and have started on the Landsat-9 TIRS-2. 
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Figure 1. Operational Land Imager Cutaway (quaternary mirror not visible) (Ball Aerospace drawing) 
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Figure 2:  Thermal Infrared Sensor Cutaway (modified NASA/GSFC drawing)

Landsat-8 OLI On-ORBIT performance

Radiometric trends (band average)
Using the on-board calibration devices and the moon the stability of the OLI focal plane has been monitored since launch (Figure 3).  Key features to note in the trends are: (1) the consistency in the trends between the various calibration trends, generally at the several tenths of percent level, and (2) the stability over the mission of the OLI bands with only the Coastal Aerosol (CA) band showing degradation exceeding a couple tenths of a percent (about 1.3% over 5 years +).  There is an indication that the color temperature of the working calibration lamp has shifted, with output decreasing in the shorter wavelengths and increasing in the longer wavelengths.  Similarly, the working diffuser appears to have decreased slightly in reflectance in the CA band (at most 0.3%) and has increased slightly in reflectance in bands longer in wavelength than about 600 nm (at up to 0.4%).  The degradation in the CA and Blue bands has been adjusted for in the product generation process using quarterly average response updates.
Detector-to-detector relative gain changes
The gains of each OLI detector relative to the band average are characterized with each solar diffuser acquisition.    The variability in the ratios of the relative gains from one diffuser acquisition to the next gives a measure of the stability of the relative gains (Figure 4).  As can be seen, the Visible Near InfraRed (VNIR) bands detectors are more stable with a standard deviation of about 0.01% between diffuser acquisitions, whereas for the SWIR bands it is around 0.03% to 0.04%. Occasionally one of the SWIR detectors will jump down in responsivity nearly instantaneously by up to 1.5%. The relative gains have been updated based on quarterly averages from the previous quarter.  In future reprocessing, relative gains from the current quarter will be used.
Noise trends
Commensurate with the stability of the responsivity of the OLI instrument, the signal to noise ratio (SNR) trends have been equally stable, changing less than 1% over the mission lifetime (Figure 5).	Comment by Cooper, Sandra C. [5]: ??
Detector operability
The OLI focal plane continues to have 100% detector operability and there have been no changes in the detector selects since launch.  There are redundant detectors on the focal plane that can be selected for downlink and some redundant detectors were selected for use on-orbit during pre-launch testing.  Since launch, there has been no need to change this detector select “mask”.
Absolute calibration
Uncertainty estimates for the reflectance-based calibration of OLI, based on the uncertainties in the: (1) pre-launch bidirectional reflectance characterization of the solar diffuser, (2) mounting angles of the solar diffuser, (3) spacecraft pointing and (4) stray light are approximately 2.5% (1 sigma) [3].  Comparisons to other satellite sensors, e.g., Sentinel 2a MSI (Figure 6) are consistent with this estimate.

Landsat-8 TIRS On-ORBIT performance

Radiometric trends (band average)
Using the on-board blackbody and deep space views the stability of the TIRS-2 instrument has been monitored since launch (Figure 7).  Starting out on the primary electronics (side A) at launch, the apparent responsivity was stable for the first six months, then started a slow degradation of about 0.2%/year for band 10 and 0.1%/year for band 11.  Once shifted to side B, the apparent responsivity decreased about 0.1% over the first six months, then the trends flattened a about 0.05% for band 10 and essentially flat for band 11 for the next two years.  The operations concept changed at about 8 months after switching to side B when the SSM encoder current became a significant concern and blackbody calibrations were limited to once every two weeks instead of ~14 times/day.  The trends in apparent responsivity are small and not compensated for in processing and at this point in time it is not clear if they represent instrument degradation or calibration source degradation. The background stability based on the deep space view has varied a maximum of 10 DN since launch (Figure 8).  Both the apparent responsivity and background response show a small variation within orbit, circa 0.1% for responsivity and 10 DN for the background response, as indicated by the vertical spread in response on an individual day.	Comment by Cooper, Sandra C. [6]: Spell out acronym at first appearance for clarity.
Noise trends
Periodically the TIRS blackbody is cycled through a range of temperatures from 270K to 320K in order to recharacterize the linearity of the TIRS radiometric response and the noise levels as a function of target temperature.  Figure 9 illustrates the stability of the TIRS noise levels at 300K as about 50 mK across the whole mission in both bands.
Stray light 
The initial significant limitation in the use of the TIRS on-orbit data was stray light [4].  This stray light introduced scene scene-dependent errors in absolute calibration and detector-to-detector variation (striping).  A stray light correction algorithm was incorporated into the data processing scheme beginning with Collection 1, which started in the Spring of 2017 [5].  Figure 10 illustrates the impact of the stray light correction algorithm on striping and banding in the image data.  Note that a contrast stretch was applied to the image data both before and after the correction to highlight the fidelity of the correction.  Figure 11 shows the RMS difference from MODIS data over several uniform ocean profiles both before the stray light correction (red +) and after the stray light correction (blue o) was applied to the TIRS image data.   RMS differences of 1-2% before the correction (and sometimes larger than 2% for Band 11) are reduced to within 0.5% for all water scenes tested in this study[5].  Note that the four points highlighted in Figure 11 (right) are comparisons made over non-uniform land scenes.  Comparisons of TIRS stray light corrected data with surface water temperature measurements propagated to the top of atmosphere (TOA) indicate small biases (less than 0.5K) and scatter around the mean of about 0.5K in band 10 and 0.6K in band 11 (Table 2), with some differences between the primary (side A) and redundant (side B) electronics.  Work is continuing to characterize these errors and correct them in processing to the extent feasible.	Comment by Cooper, Sandra C. [7]: Spell out acronym at first appearance for clarity.	Comment by Cooper, Sandra C. [8]: Suggest you spell out MODIS just as you would for any other acronym to ensure clarity for potential readers.

Detector operability
The TIRS focal plane continues to have 100% detector operability in the final data product by using a combination of the two rows of data downlinked for each spectral band.

Table 2. Landsat-8 TIRS absolute calibration results based on surface water temperatures from NOAA buoys and NASA/JPL buoys propagated to the Top-of-Atmosphere.  Data reduction and analysis from RIT and JPL.
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Figure 3. Selected Landsat-8 OLI Radiometric Response Trends
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Figure 4:  Landsat-8 OLI Relative Gain variability (1 sigma) between successive diffuser acquisitions
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Figure 5: Landsat-8 OLI  median Signal to Noise Ratios and 2 sigma uncertainties  at “Typical” Radiance Levels 
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Figure 6: Consistency in radiometric calibration between Landsat-8 OLI and Sentinel-2a MSI
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Figure 7.  TIRS apparent responsivity changes since initial on-orbit calibration. The changes could be due to either the instrument or the calibration source.   Significant events that have affected the trends are included including the switch from side A to the redundant side B electronics approximately 2 years after launch.  The trends were renormalized with the electronic side shift.  
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Figure 8.  Stability of the TIRS deep space view (background signal plus bias)
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Figure 9. Landsat-8 TIRS noise equivalent delta temperature (NEdT) at 300K trends since launch
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Figure 10.  Landsat-8 TIRS band 10 image off the coast of Baja, CA without and with stray light correction applied [5].
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Figure 11.  Comparison of RMS error between TIRS with MODIS data across various cross track profiles before and after stray light correction.  Red circle and box indicate land targets, where the 20 minute time differential likely caused a temperature difference and the sites are less uniform. [5]


Landsat-9 Development
OLI-2
The OLI-2 is close to a carbon copy of OLI and used the focal plane modules developed as spares for OLI.  Performance is expected to be similar to OLI. The OLI-2 has completed its initial integration. This assembly level, which includes the telescope, calibration sub assembly, focal plane, focal plane electronics, instrument support electronics and harnessing will be used for all performance testing (Figure 12).  Functional testing has been performed, and spatial testing, including edge response, ghosting, bright target recovery and line of site measurements, is scheduled for August 2018.  Radiometric testing will follow, which includes absolute radiometric response, linearity, heliostat and stability measurements.  Part of the radiometric test set up is the spectral characterization, which will use the Goddard Space Flight Center (GSFC) provided laser based spectral calibration facility (Goddard Laser for Absolute Measurement of Radiance – GLAMR) [6]. GLAMR provides a full aperture spectral calibration source, and will be used to measure the spectral response of all detectors in all bands of OLI-2.  This is an improvement over OLI where a monochromator-based approach characterized about 10% of the detectors using a sub-aperture source.  GLAMR will also allow characterization of the out-of-band response in at least some of the spectral bands. 	Comment by Cooper, Sandra C. [9]: Uses?
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Figure 12.  OLI-2 integrated instrument (minus baseplate and thermal control hardware) as configured for initial functional and spatial performance testing (Ball Aerospace photograph)


TIRS-2
TIRS-2 has basically the same design as TIRS, though a few changes were made as a result of issues with the TIRS on-orbit performance, as well as some major changes to increase the reliability of the instrument by adding additional redundancy [7]. The two key on-orbit performance issues addressed were stray light rejection and the scene select mechanism encoder reliability.  The stray light performance was addressed in section 3.2 and the encoder issue precipitated the switch in the electronics to the redundant side in early 2015 and subsequent change in operations concept in late 2015 where the encoder is only powered every ~2 weeks.  This limited the radiometric calibration collects using the on-board black body and deep space view to the same interval, as shown in Figures 6 and 7.  Only the straylight related design changes and performance resulting therefrom will be discussed here.  The challenge of understanding and ameliorating the stray light rejection performance of the TIRS instrument has been a large part of the TIRS-2 development effort. Characterization of the TIRS on-orbit performance using the moon as a hot target on a cold background, combined with stray light analysis at both GSFC and the Space Dynamics Laboratory (under contract to GSFC) was able to identify the primary stray light (at 13° off axis) as originating at the lens mounting structure for lens 3 (Figure 13) [8].  Stray light modeling showed lens 2 also contributed to stray light at 22° off axis, though this was not initially noticed in the on-orbit data.  Baffles were designed and added to the telescope; performance based on the models and measurements of the partially integrated instrument confirmed improvement in stray light rejection by approximately an order of magnitude (Figure 14), reducing the stray light from a circa 10% to a circa 1% effect.  Analysis demonstrates that the revised design will allow absolute radiometric performance comparable to previous Landsat thermal sensors under all but extreme target and background conditions. As of this writing the TIRS-2 instrument is largely integrated (Figure 15) and will commence thermal vacuum performance testing in the Fall of 2018 [9].  	Comment by Cooper, Sandra C. [11]: Spelled elsewhere as one word – be consistent.	Comment by Cooper, Sandra C. [12]: Spelled elsewhere as two words – be consistent.	Comment by Cooper, Sandra C. [10]: State the full name, not a shortened version.
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Figure 13. TIRS optical design.  Locations of baffles added to TIRS-2 telescope are shown in red circles [8]
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Figure 14. Improvement in stray light rejection from original design (red) to design with added baffles (blue) based on models and measurements. [8].
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Figure 15. TIRS-2 Integrated instrument (TIRS-2 NASA/GSFC photograph)

Summary

The Landsat-8 TIRS and OLI sensors continue to operate well on-orbit.  Both are very radiometrically stable.  The TIRS stray light correction algorithm improves both absolute and relative radiometry of the data products.  The Landsat-9 TIRS-2 and OLI-2 instruments have entered the integrated instrument test phase.  Partially integrated instrument test results indicate that TIRS-2 and OLI-2 will have comparable noise, operability and stability behavior.  Added baffles to the TIRS-2 design have reduced stray light by about an order of magnitude, which should allow comparable performance to historical Landsat-7 ETM+ thermal data without algorithmic stray light correction.  Expect Landsat-9 to launch in December 2020 at which point there will be two Landsat and two Sentinel-2 spacecrafts on orbit, providing high quality multispectral data every few days on average.	Comment by Cooper, Sandra C. [13]: All previous verbiage shows this wording as being hyphenated as “on-orbit”.
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Fig. 1. Cross-section of the TIRS-2 optical system illustrat-
ing the location of the four refractive lenses, focal plane, and
mechanical structure. The two red circles near Lens 2 and 3
indicate the location of the added stray light baffles.
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Fig. 2. Stray light signal as a function of the off-axis angle
of the source. Red lines indicate the signal without baffles
and blue lines indicate the signal with baffles installed. The
dotted lines are the signals predicted from the optical model
while the solid lines are measured signals from a laboratory
set up of a flight spare telescope. These data demonstrate
the effectiveness of the added baffles at reducing the scattered
signal.
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