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Landsat 8 (L8), launched on February 11, 2013, and Landsat 9 (L9), to be launched in December 2020,  are the latest satellites in the 40-year history of the Landsat Program. Landsat 9 was designed as a rebuild of Landsat 8 as much as possible. So while there are a few differences between them, the sensors on-board each mission can in most ways be considered the same. Areas of difference which impact Cal/Val algorithms will be addressed in each individual algorithm description. If an algorithm does not specify for which mission it is applicable, it is applicable for both missions.  Before L8/9 data are made available, they are radiometrically and geometrically corrected using processing inputs from the Calibration Parameter File (CPF), Bias Parameter File (BPF), and Radiometric Look-Up Table (RLUT).  The Calibration Validation Team (CVT) ensure that these files are monitored and updated over the life of the missions.  

The Image Assessment System (IAS) assesses data on-orbit and monitors changes temporally. The radiometric, geometric, and spatial performance of the Operational Land Imagers (OLI) and Thermal Infrared Sensors (TIRS) are continually monitored, characterized and calibrated on-orbit.  Data processed by the Level 1 Product Generation System (LPGS) are also trended to a database for later analysis by the CVT.  

The CVT monitors the performances of both L8 and L9 data on a daily basis by trending the results of radiometric and geometric algorithms processed on all data.  Through regular evaluation of the stored results in the database, changes in instrument behavior can be monitored and corrected over time. The CVT monitors the changes in the sensors and determines whether to update the CPF, BPF, and RLUT in order to create better image products, while maintaining a level of consistency for comparability through time.    

This document details all of the radiometric and geometric processing algorithms for the image assessment and data processing of the L8/9 sensors.
[bookmark: _Toc340837414][bookmark: _Toc345687656][bookmark: _Toc350351926][bookmark: _Toc476818571]Document Overview
This document explains the methods for the geometric and radiometric characterization and calibration of the L8/9 OLI and TIRS instruments implemented at the United States Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center. It provides a brief overview of the instruments and their data, followed by discussions of the design philosophy, data flow diagrams, and algorithm descriptions developed by the CVT for geometric and radiometric characterization and calibration.  
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Landsat 8/9 are joint missions formulated  by NASA and the USGS and continue the 40+ years of global Earth land surface data collection and distribution provided by the Landsat series. Landsat 8 was originally named the Landsat Data Continuity Mission (LDCM) before commissioning and was a large departure in many ways, i.e. pushbroom sensors instead of whiskbroom, spectral band definitions, etc., from previous Landsats. Landsat 9 was designed to be a rebuild of Landsat 8 as much as possible. Some differences between to two missions include baffles added to the L9 TIRS telescope in an effort to reduce straylight contamination seen in the L8 TIRS, a different Scene Select Mirror encoder for L9 TIRS since the failure of the one for L8 TIRS, as well as seleting or building new components for L9 to replace unvailable components used for L8.

The space segments consist of observatories launched into a 705 km, 10:00 AM equatorial crossing sun-synchronous orbit with a 16 day repeat period following the Wordwide Reference System 2 (WRS-2). Prior to the launch of Landsat 9, Landsats 7 and 8 occupied the same orbit but were phased eight days apart allowing an opportunity for acquiring a WRS-2 scene every eight days. After launch, Landsat 9 took the previous orbital position of Landsat 7. The L8/9 spacecrafts, developed by Orbital ATK/General Dynamics Aerospace, each accommodate an OLI, developed by Ball Aerospace, and TIRS, developed by NASA Goddard.
[bookmark: _Toc340837416][bookmark: _Toc345687658][bookmark: _Toc350351928][bookmark: _Toc476818573]OLI
The OLI images the Earth in nine spectral bands that cover the Visible and Near-Infrared (VNIR) and Short Wavelength Infrared (SWIR) portions of the electromagnetic spectrum, see Table 3‑1.  With L8 OLI, all bands are downlinked at 12-bit radiometric resolution while the OLI sensor itself acquires data at 14-bit resolution. The L9 OLI will downlink all 14 bits of the sensor. Pixels for eight bands will be 30 meters while pixels for the panchromatic band will be 15 meters, see Table 3‑1.

The OLI is a pushbroom sensor supplied by Ball Aerospace Technology Company.  The telescope contains four mirrors with a front aperture stop that is 135 mm.  The Focal Plane Array (FPA) includes 14 Sensor Chip Assemblies (SCAs), as shown in Figure 3‑1, that are passively cooled.  Each SCA contains 494 imaging detectors, with an additional 12 video reference pixels that do not respond to light.
[bookmark: _Toc340837417][bookmark: _Toc345687659][bookmark: _Toc350351929][bookmark: _Toc476818574]On-Board Calibrators 
The OLI provides both internal calibration sources such as lamps to ensure radiometric accuracy, as well as capabilities to perform solar and lunar calibrations within the field of view constraints.
Solar Calibration and Linearity
The spacecraft must point the sun-viewing boresight at the sun and track it.  To assure the calibration returns valid results, there must be a glint-free field of view for the diffuser, as defined in the ICD.  During solar looks, the solar array will be angled to prevent it from infringing on the glint-free field of view.
Lunar Calibration
The spacecraft must perform sweeps across the moon to image the moon on all 14 Focal Plane Modules (FPMs).  Since the moon is only large enough to subtend on 1 FPM, it will require 14 sweeps across the moon (over multiple orbits if necessary) with the spacecraft yawing to place the moon on each of the FPMs.
[bookmark: _Toc229469467][bookmark: _Toc340837418][bookmark: _Toc345687660][bookmark: _Toc350351930][bookmark: _Toc476818575]Geolocation Calibration Activities
The following geolocation calibration activities require spacecraft operations:
Star Field Calibration
A section of the sky that is visible to both star trackers and the instrument must be imaged to locate stars against the star catalog.  This will occur during commissioning only.
Calibration Data  
In order to perform the calibration, the raw star tracker and gyro data for ground processing must be available.

[image: ]
[bookmark: _Ref382817624][bookmark: _Toc476818670]Figure 3‑1. OLI Focal Plane Assembly
	#
	Band Center
	Wavelength (nm)
	Center Wavelength Tolerance (±nm)
	Minimum Lower Band Edge (nm)
	Maximum Upper Band Edge (nm)

	1
	Coastal Aerosol
	443
	2
	433
	453

	2
	Blue
	482
	5
	450
	515

	3
	Green
	562
	5
	525
	600

	4
	Red
	655
	5
	630
	680

	5
	NIR
	865
	5
	845
	885

	6
	SWIR1
	1610
	10
	1560
	1660

	7
	SWIR2
	2200
	10
	2100
	2300

	8
	Panchromatic
	590
	10
	500
	680

	9
	Cirrus
	1375
	5
	1360
	1390
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[bookmark: _Toc476818576]TIRS
The TIRS is a 2-band thermal imager with bands centered at 10.8 and 12 microns, see Table 3‑2. Both bands have a spatial resolution of 100 meters operating in a pushbroom method to achieve a 188-km swath width.  The FPA, which includes three SCAs with Quantum Well Infrared Photometers (QWIPs), was built in-house at the NASA Goddard Space Flight Center, shown in Figure 3‑2. TIRS collects and downlinks data in 12-bits. The FPA is cryo-cooled to 43 K, with an optical assembly passively cooled to 180K.  A scene-select mirror (SSM) in the optical path allows calibration with two sources: a variable temperature blackbody and space views. The SSM encoder failed on L8, so the encoder vendor was changed for L9.

The optical design is a four-element refractive design with a 107.8 mm clear aperture.  Three of the elements are based on germanium, and the fourth on zinc selenide. L8 TIRS had a significant straylight issue, so to mitigate this two baffles were added to the L9 optical design. TIRS has two spectral bands achieved through interference filters.  The filters are thermally connected to the focal plane and operate at a somewhat higher temperature.  Transmission characteristics are tailored for each band.  Very good out-of-band rejection is required to perform precise spectral radiometry, and the in-band transmission must be high enough to meet the detector sensitivity goals.  In addition, filter placement must accommodate a 2.5-second simultaneity requirement between 10.8 and 12 um measurements, and all data must be collected within 170 rows of detector pixels.

TIRS relies on QWIP detectors coupled with existing Indigo 9803 640 x 512 pixel ROICs to give the previously mentioned 185 km swath in 3 arrays with 35-pixel overlap between arrays.
[bookmark: _Toc250966881][bookmark: _Toc340837420][bookmark: _Toc345687662][bookmark: _Toc350351932][bookmark: _Toc476818577]Onboard Calibrator
A key component for the TIRS is the onboard calibrator.  The calibrator is a curved-plate blackbody with V-grooves to improve emissivity.  The design and coating is very similar to that used for the Moderate Resolution Imaging Spectrometer (MODIS) to give high emissivity and controllable temperature.  The output from the blackbody is National Institute for Standards and Technology (NIST) traceable and capable of providing sources of two temperatures between 265 and 330 K within 2 orbits.  Set point control of the blackbody is 2 K, with the capability to change the temperature by 6 K per half orbit.
[bookmark: _Scene-Select_Mirror][bookmark: _Toc250966882][bookmark: _Toc340837421][bookmark: _Toc345687663][bookmark: _Toc350351933][bookmark: _Toc476818578]Scene-Select Mirror
A scene-select mirror rotates around the optical axis on a 45-degree plane to provide the telescope with a view to nadir (Earth), space (cold calibration “target”), and on-board blackbody (hot calibration target).  The mirror is based on a solid aluminum blank diamond turned flat and super polished.  The size of the mirror is 206.5 x 148.5 mm.
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[bookmark: _Ref476659571][bookmark: _Toc476818671]Figure 3‑2. TIRS Focal Plane Assembly
	

#
	Band
	Center Wavelength (nm)
	Center Wavelength Tolerance (±nm)
	Minimum Lower Band Edge (nm)
	Maximum Upper Band Edge (nm)

	10
	Thermal 1
	10800
	200
	10300
	11300

	11
	Thermal 2
	12000
	200
	11500
	12500


[bookmark: _Ref476659538][bookmark: _Toc476818777]Table 3‑2. Spectral Ranges and Pixel Sizes of TIRS Bands
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In this document, characterization is the process of measuring and evaluating the geometric and radiometric performance of the OLI and TIRS.  Calibration is the process of using the information obtained during characterization to update the calibration parameters associated with both instruments.

All calibration parameters are stored in an American Standard Code for Information Interchange (ASCII) file that can be accessed during processing.  The file containing these parameters is referred to as the calibration parameters file (CPF) in this document.
[bookmark: _Toc340837423][bookmark: _Toc345687665][bookmark: _Toc350351935][bookmark: _Toc476818580]Process Flows
In order to perform the characterization, calibration and correction functions, described in the Landsat Data Continuity Mission Government Calibration and Validation Plan and Landsat 9 Government Calibration and Validation Plan, each of the algorithms (described in Section 6) are linked together in a processing flow.  This processing flow is separated into OLI geometry, OLI radiometry, TIRS geometry, and TIRS radiometry.
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	Definition

	ACS
	Attitude Control System

	
	

	ASC
	

	ASCII
	American Standard Code for Information Interchange

	AVHRR
	Advanced Very High Resolution Radar

	B2B
	Band-to-Band

	BIH
	Bureau International de l’Heure

	CPF
	Calibration Parameter File

	DC
	

	DCE
	Data Collection Event

	DEM
	Digital Elevation Model

	DMA
	Defense Mapping Agency

	DOQ
	Digital Orthophoto Quadrangles

	ECF
	Earth Centered Fixed

	ECI
	Earth-Centered Inertial

	ECR
	Earth Centered Rotating

	ECS
	EOSDIS Core System

	EF
	Earth-Fixed

	EO-1
	Earth Observing-1

	EOSDIS
	Earth Observing Station Data and Information System

	ER
	

	EROS
	Earth Resources Observation System

	ETM
	Enhanced Thematic Mapper

	GCP
	Ground Control Point

	GCTP
	General Cartographic Transformation Package

	GPS
	Global Positioning System

	GSD
	Ground Sample Distance

	HDF
	Hierarchical Data Format

	IAS
	Image Assessment System

	IEEE
	Institute of Electric and Electronic Engineers

	IFOV
	Instantaneous Field of view

	IRU
	

	L8
	Landsat 8

	L9
	Landsat 9

	LAS
	

	LOS
	Line-of-Sight

	MD
	Metrics Database

	MET
	Spacecraft Time

	MIT
	Massachusetts Institute of Technology 

	MLH
	Maximum Likelihood Estimate

	MS
	Multispectral

	NASA
	National Aeronautics and Space Administration

	NBR
	Navigation Base Reference

	NEOS
	National Earth Orientation Service

	OB
	Orbit Reference Frame

	OLI
	Operational  Land Imager

	PAN
	Panchromatic

	RMSE
	Root Mean Squared Error

	SCA
	Sensor Chip Assemblies

	SDP
	

	SDS
	

	SOM
	Space Oblique Mercator

	TAI
	International Atomic Time

	TIRS
	Thermal Infrared Sensor

	
	

	USGS
	U.S. Geological Survey

	UT-1
	Universal Time

	UTC
	Universal Time-Coordinated

	UTCF
	

	UTM
	Universal Transverse Mercator

	WGS84
	World Geodetic System 1984

	WLS
	Weighted Least Square

	WRS
	World-wide Reference System
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