
1.
2.
3.
4.
5.
6.
6.1.
6.2.
6.3.
6.3.1.
6.3.2.
6.3.3.
6.3.4.
6.3.5.
6.3.6.
6.3.7.
6.3.8. TIRS Scene Select Mechanism (SSM) Model Fit Algorithm
1.
2.
3.
4.
5.
6.
6.1
6.2
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.3.7
6.3.8
6.3.8.1 Background/Introduction
In December 2014, failures in the Landsat 8 TIRS SSM mirror encoder circuitry made it necessary to operate the instrument with the SSM in an open loop control mode (mode-0) with the SSM position encoder turned off. This anomaly was eventually resolved by switching to the redundant “B-side” TIRS electronics, allowing TIRS SSM operations to continue in the nominal closed loop control mode (mode-4). Subsequent anomalous behavior in the B-side electronics raised the possibility of having to perform sustained TIRS operations in mode-0, leading to a requirement for an operational SSM position estimation, modeling, and prediction capability. This capability would replace the SSM encoder position measurements provided in the downlinked ancillary data; which are unavailable when operating in the open loop mode-0 with the encoder turned off; with SSM position estimates calculated using a time-varying model of SSM position. This algorithm uses estimates of the SSM position, derived from individual calibration scenes, and any available SSM encoder telemetry to construct such a time-varying model of SSM motion/position. This model is then used to predict SSM pointing in support of TIRS Level 1 data processing.

The SSM calibration algorithm uses the trended output of the TIRS SSM calibration algorithm and combines those single-scene estimates of SSM position with available SSM encoder measurements collected during the first few minutes following a mode-4 to mode-0 switch, to construct an integrated measurement data set (see note #1). These measurements are used to adjust the parameter values in a linear with exponential decay model that was empirically determined to track actual SSM motion following a mode-0 switch. The time density and duration of the measurement data set determines which model parameters are candidates for adjustment in any given invocation of the model fit logic. Once a refined set of model parameter values are computed, they are used to generate a table of estimated SSM positions for the time period following the mode switch, suitable for use in the geometric correction of TIRS data acquired during that time period (see note #2).

The algorithm consists of several sub-functions, controlled by a graphical user interface (GUI), that together implement the steps needed to create the SSM position estimate records used in Level 1 data processing. These sub-functions include:
1) Identifying a new mode-4 to mode-0 switch event and creating an initial SSM position model for the time period following the event.
2) Modifying the parameters (i.e., start date/time) of an existing mode-0 switch event. This may be necessary to correct an event that was initially created based upon a planned switch time to the actual event time.
3) Gathering the available measurements of SSM position for the time period following the switch event, including both SSM encoder measurements reported in the TIRS telemetry and scene-based position measurements derived by the SSM calibration algorithm, and using these measurement data to solve for updates to the current SSM position model parameters. This includes using the time distribution of data points to determine the subset of model parameters that can be reliably solved for given the available data coverage.
4) Using the updated model parameter values to generate a table of SSM position estimates covering the time span following the corresponding mode-4 to mode-0 switch event.

Mode-4 to mode-0 switch events and the associated estimated SSM pointing model parameter values are stored in the geometric trending database so that they are available to serve as either the starting point of a new model fit operation using newly acquired data, or to generate an updated SSM position table to support Level 1 processing.
6.3.8.1.
6.3.8.2. Dependencies
The TIRS SSM model fit algorithm assumes that either Level 1 processing or TIRS stored state of health (SOH) data ingest processing has extracted, preprocessed, and stored (in the geometric trending data base) the available SSM encoder telemetry for the mode-0 operating period. It also assumes that the TIRS SSM Ccalibration Aalgorithm 6.3.8 has analyzed one or more scenes and created estimated SSM positions which have also been stored in the geometric trending data base.
6.3.8.3. Inputs
The TIRS SSM calibration algorithm uses the inputs listed in the following table. Note that some of these “inputs” are implementation conveniences (e.g., using an ODL parameter file to convey the values of and pointers to the input data). The second column in the table shows which algorithm operation: 1) mode-switch event identification (Add Event), 2) mode-switch event update (Edit Event), 3) data gathering and model fit (Fit Model), or 4) SSM position table generation (Generate Position); uses each input.

	Algorithm Inputs
	Operation

	User Input
	Control

	 Operation selection:
	Control

	 1. Add new switch event.
	Control

	 2. Edit existing switch event.
	Control

	 3. Fit SSM position model.
	Control

	 4. Generate SSM position table.
	Control

	 Event date as year, day of year, second of day
 or UTC year, month, day, hour, minute, second.
	Add Event
Edit Event

	 Event selection (from displayed list)
	Edit Event
Fit Model

	 Fit Solution Acceptance
	Fit Model

	 Position Table Start date/time (year, day of year, second of day)
	Generate Position

	 Position Table End date/time (year, day of year, second of day)
	Generate Position

	 Position Table Acceptance
	Generate Position

	CPF Service
	Add Event
Fit Model

	 Calibration Parameter File (CPF) Path
	Add Event
Fit Model

	Calibration Parameter File (see note #3)
	Fit Model
Generate Position

	 SSM nadir reference angles (side A and side B)
	Fit Model

	 Leap second table (for spacecraft clock to/from UTC conversion)
	Fit Model

	 Default Fit Quality Threshold (new parameter – 1 value)
	Fit Model

	 Telemetry and Image Observation Weights (new parameters – 2 values, one for telemetry observations and one for image observations)
	Fit Model

	 Apriori Parameter Weights (new parameters – 8 values, one per model parameter)
	Fit Model

	 Model Parameterization Break Points (new parameters – 4 values that define the time break points between the 1, 3, 5, 7, and 8 parameter versions of the model fit)
	Fit Model

	 Model Observation Gap Windows (new parameters – 3 pairs of values, each pair defining a time window which, lacking any observations, would cause the introduction of apriori parameter observations)
	Fit Model

	 Convergence Threshold Weights (new parameters – 8 values, one per model parameter)
	Fit Model

	 Sampling Interval Table (new parameters – variable number, nominally 14, of pairs of values, each pair defining a start time, in seconds, and a time increment, in seconds, to use in constructing the SSM position table entry times).
	Generate Position

	SSM Mode Switch Event Table (new table)
	All

	 Mode switch ID, year, day of year, seconds of day (UTC) (see Table 1)
	All

	TIRS_TELEMETRY_COMMAND Table
	Fit Model

	 L0R_TIME_DAYS_FROM_J2000
	Fit Model

	 L0R_TIME_SEC_OF_DAY
	Fit Model

	 MC_ENCODER_FLAGS
	Fit Model

	 SSM_MECH_MODE
	Fit Model

	 SSM_ENCODER_POSITION_SAMPLE_2
	Fit Model

	TIRS_TELEMETRY_CIRCUIT Table
	Fit Model

	 L0R_TIME_DAYS_FROM_J2000
	Fit Model

	 L0R_TIME_SEC_OF_DAY
	Fit Model

	 ELEC_ENABLED_FLAGS
	Fit Model

	TIRS_SSM_ESTIMATION Table (TIRS SSM Calibration Output)
	Fit Model

	 SSM Angle Estimation Epoch as year, day of year, seconds of day
	Fit Model

	 SSM Estimated Position in counts (or radians)
	Fit Model

	TIRS_SSM_ESTIMATION_SCA Table (TIRS SSM Calibration Output)
	Fit Model

	 SCA Number
	Fit Model

	 Post-Fit Along-Track RMSE
	Fit Model

	 Post-Fit Across-Track RMSE
	Fit Model

	 Number of Points
	Fit Model

	SSM Mode 0 Model Parameter Table (new table)
	Add Event
Fit Model
Generate Position

	 Model ID, switch ID, algorithm version, nadir reference, model parameter values, date added, date disabled (see Table 2)
	Add Event
Fit Model
Generate Position

6.3.8.4. Outputs
	Algorithm Outputs
	Operation

	Output To User
	All

	 Switch Event (switch ID, year, day of year, seconds of day (UTC)
	Edit Event

	 Switch Event List
	All

	 Invalid Event Message
	Add Event
Edit Event

	 Model Parameters (see Model Parameter Table contents above)
	Fit Model

	 Model Fit Statistics (fit RMSE for telemetry observations, image observations, and all observations)
	Fit Model

	 Updated Observations with Fit Residuals (observation date/time, seconds from mode switch, days from mode switch, observation type, measured encoder counts, modeled encoder counts, residual in counts)
	Fit Model

	 Plot of observed and modeled encoder positions vs. time since switch (optional)
	Fit Model

	 SSM Position Estimates (year, day of year, second of day, position in encoder counts)
	Generate Position

	CPF Service
	Add Event
Fit Model

	 CPF Request (based upon date)
	Add Event
Fit Model

	SSM Mode Switch Event Table (New) (See Table 1 for details)
	Add Event
Edit Event

	 Switch event ID, year, day of year, seconds of day
	Add Event
Edit Event

	SSM Mode 0 Model Parameter Table (New) (See Table 2 for details)
	Add Event
Fit Model

	 Model ID, switch ID, algorithm version, nadir reference, model parameter values, date added, date disabled
	Add Event
Fit Model

	SSM Mode 0 Position Estimate Table (New) (See Table 3 for details)
	Generate Position

	 Year, day of year, seconds of day, encoder position, quality flag, associated model ID, date added, date disabled.
	Generate Position

	SSM Model Fit Report File (see Table 4 for details)
	Fit Model

	 Report generation date/time and location
	Fit Model

	 Mission (Landsat 8) and sensor (TIRS)
	Fit Model

	 Original model parameters
	Fit Model

	 Updated model parameters
	Fit Model

	 Fit statistics
	Fit Model

	 Updated observations with model fit residuals
	Fit Model

6.3.8.5. Options
User Operation Selection (Add Event, Edit Event, Fit Model, Generate Positions)
TIRS SSM Model Parameter Trending User Confirmation
TIRS SSM Position Estimate Trending User Confirmation
Prototype Code
The prototype code is tagged in the SubVersion repository at:
https://edclxs131:18080/svn/l8/tags/calval/phase4/tirs_fit_ssm_model_4.0

and the prototype input and output files are located on l8srlald01 under /data2/cvtk_test_data/geometry/tirs_fit_ssm_model/ver4.0. The prototype implementation includes a C-language executable for the model parameter estimation and SSM position table generation functions. The process control and data gathering operations are emulated by a Python wrapper that invokes the executable. Inputs to the prototype executable include an ODL file, created by the Python wrapper, containing all parameters needed by the program, and ASCII data files that emulate the data that would be returned by database queries of the switch event, model parameters, TIRS telemetry, and SSM calibration tables; outputs are an ASCII report file documenting the fit results, including the information that would be written to the trending database, and a tab-delimited ASCII file containing the table of estimated SSM positions in the form used by the Level 1 processing system.

The following are the input files and database query output files needed for TIRS SSM model fitting process, in the form in which that information was represented in the prototype code. The first two take the places of the SSM Mode Switch Event table and SSM Mode 0 Model Parameter table, respectively. In the prototype implementation, these two files must reside in the directory from which the build_tirs_fit_model.py Python script is run.

TIRS_SSM_Mode0_Switch_Event.csv
An ASCII comma-delimited file containing the columns of the switch event table, including: event ID number, year of event, day of year of event, and seconds of day of event.

TIRS_SSM_Mode0_Model_Parameters.csv
An ASCII comma-delimited file containing the columns of the mode 0 model parameter table including: model ID number, the switch event ID number, model version number, and encoder nadir viewing value, followed by the SSM model coefficients for that model ID, switch ID, and version number. The prototype file contains a valid flag field instead of the date added and date disabled fields called for in the operational database implementation. The switch ID is used to link the model to the associated switch event and the start time of that event using the TIRS_SSM_Mode0_Switch_Event.csv file.

tirs_telemetry.dat
Represents the data returned by the database query of the SSM telemetry information. These data are parsed according to the user entered switch event ID given when running the Python script.

tirs_cal.dat
Represents the data returned by the database query of the TIR SSM calibration information. These data are parsed according to the user entered switch event ID given when running the Python script.

The prototype C code was compiled with the following options when creating the test data files:
	-g -Wall -O2 -march=nocona -mfpmath=sse -msse2

The code units of the prototype implementation are briefly described here. Additional details are provided below for units that perform core algorithm processing logic.

6.3.8.6. Procedure

Nonlinear Least Squares Functionality
This section describes the portion of the code that was integrated into the L8 IAS. The function of this code, realized as an executable invoked by the Python wrapper, is to determine a new set of SSM model coefficients, present the results of the model fit in a report file, and generate the estimated SSM encoder table of discrete values needed for product generation. The executable associated with this section is called by the Python routines whose role is to emulate the inner workings of the user interface/process control GUI for collecting and integrating the information needed by the nonlinear least squares fit. Descriptions of the purpose and functionality of these Python scripts follow this section describing the nonlinear least squares fitting process.
tirs_fit_ssm_model – Main procedure that retrieves input parameters, calls the user specified fitting function, and creates the table needed for product generation.

read_parameters – Retrieves the user specified and/or default parameters.

ias_read_tirs_encoder_results – Reads the input SSM position observation data collected by the Python scripts. The input file contains observation times relative to the SSM switch event, the encoder telemetry values, and calibration measurements.

fit_lsq_ias – Performs an iterative nonlinear least squares fit to the input read from ias_read_tirs_encoder_results. This process is described in the Procedure section below. Matrices and vectors (i.e., one-dimensional matrices) are handled through the GNU Scientific Libraries (GSL) matrix and vector functions and calls. The nonlinear least squares solution outputs, which are the new SSM model coefficients, are found using the GSL QR matrix decomposition routines integrated into a nonlinear least squares iterative solution method. A large number of ODL and default parameters are retrieved though modules present in the read_parameters file. This is the prototype implementation of the algorithm documented in this ADD.

analyze_time_period – Analyzes the time distribution of the available observations (encoder telemetry and scene-based estimates) and determines whether or not there are enough points within the time periods required to support the estimation of different model parameter subsets.

encoder_model – Evaluates the SSM model function for a given time, using as input the encoder origin (side A or B electronics), the current model coefficients, and the time from the SSM switch event in seconds.

encoder_model_partials – Returns the partial derivatives for the SSM model function. This is needed for the nonlinear least squares solution.

convert_encoder_time_string – Converts a time string present in the input file, the combined telemetry and calibration data, to a double that can be used as a time variable in nonlinear least squares fitting.

create_table_fixed – Creates a set of discrete SSM model fit values based on a look up table of time breaks.

create_table_calculate – Creates a set of discrete SSM model fit values based on a method that doubles the sampling of the continuous function until the minimum error between two points, for all the points created, is below some threshold, then throws out points, starting with the one with the largest error based on same mid-point concept. This code is not part of the ADD and was used only for development.

create_report – Writes out a report file that closely mimics table 4. The code uses the standard IAS module for creating a header to the report file (ias_misc_initialize_gps_report_header) however this call may need to be modified due to it being called here in a situation where no L1G, L0R, or work order ID is present.

fit_multimin – Determines a new set of SSM modelling coefficients, based on the combined telemetry and calibration input file, using a simplex method. The libraries, routines, and approach used are those of the GSL minimization routines. This method is not currently used and was set up only for analysis purposes.

math_get_time_difference – Calculates the difference in seconds between two dates that given as [Year, Day of year, Seconds of day].

minimize_function_multimin – The objective function to be minimized. This is needed for fit_multimin and the simplex method.

fit_lsq_gsl – Determines new SSM modelling coefficients, based on the combined telemetry and calibration input file, using an iterative nonlinear least squares approach. The libraries, routines, and approach used are those of the GSL minimization routines. This currently is a CalVal analysis tool or option and is still under investigation.

ssm_model_f – SSM model function needed by fit_lsq_gsl.

ssm_model_f_res – SSM model residual function needed by fit_lsq_gsl.

ssm_model_df – Derivative of SSM model function needed by fit_lsq_gsl.

ssm_model_fdf – The function and gradient together, needed by fit_lsq_gsl.

The ODL file used by the tirs_fit_ssm_model has the basic form:

OBJECT = TIRS_SSM_MODEL_FIT
 WO_DIRECTORY = <Output working directory>
 WORK_ORDER_ID = <Work order ID>
 INITIAL_VALUES = <Initial SSM model parameters>
 TIRS_ENCODER_FILE_NAME = <Input file of telemetry and calibration data>
 TIRS_RESULTS_FILE_NAME=<ADD Report file name>
 MODEL_FIT_TYPE = <Nonlinear fit method to use>
 TIRS_OUTPUT_FILE_NAME = <TIRS output table name>
 ENCODER_VALUE0 = <TIRS encoder origin value>
 EVENT_END_TIME = <Last date or entry in output table>
END_OBJECT = TIRS_SSM_MODEL_FIT
END

Assembling Data Necessary for Nonlinear Least Squares Fit Functionality

This section describes the Python code that emulates the inner workings of the GUI that assembles the input data needed for the nonlinear least squares fit. This approach was taken for several reasons:
1) The Python code provides a straightforward test environment to investigate and resolve any issues that may present themselves with the core model fitting operations for TIRS SSM mode-0.
2) It simplifies determining and verifying test cases and results for the numerous options, data conditions, and operational scenarios that can come up with TIRS mode-0 calibration.
3) It avoids the complexity and implementation difficulty involved in creating a set of code that can: communicate with the L8 IAS database; allow for a graphic interface to not only edit the retrieved database information, but also allow user specified changes to the way those query results are used in formulating the model; and build a graphical interface to display the results from this process.

Because of some of the issues listed above, a substantial portion of the required TIRS mode-0 operational capabilities were either simulated (e.g., the interfaces to the various database tables needed for input information) or were not included in the prototype implementation (e.g., the ability for the user to interactively select the various processing options available, and the ability to view those results in a graphical manner). A command-line oriented prototype may also provide some added value as a development template in that an operational implementation of this algorithm that follows a similar path: an initial command-line version that puts the basic processing and database functionality in place with a subsequent release providing the GUI functionality; would have significant advantages in terms of speed of deployment and flexibility of use during initial operations.

Note: Several of the Python calls or functions within the prototype are part of a separate effort to implement much of the functionality of the geometric model within Python so some of the items described are not strictly needed for the TIRS SSM model fitting. Files are listed with the .py extension in the names below while functions are given as their corresponding call names.

const.py – Python friendly (I think) way to create a set of constants that can be treated like a standard C include file. There are number of constants within this file that are not used in this prototype.

ias_time.py – File that contains multiple IAS time conversion tools but in a more direct form that Python likes.

get_leap_seconds – Reads a CPF to get the number of leap seconds from J2000. Contained in ias_time.py

get_time_difference – Finds the time difference, in seconds, between two dates. Contained in ias_time.py but currently not used.

utc2times - Performs time conversions of UTC including UT1, Terrestrial Time, and Barycentric Dynamical Time. Contained in ias_time.py but currently not used.

add_seconds_to_year_doy_sod – Adds a given number of seconds to a date. Contained in ias_time.py but currently not used.

convert_time_to_seconds_since_j2000 – Converts a given date in days and seconds from J2000 to seconds from J2000. Contained in ias_time.py

convert_year_doy_sod_to_j2000_seconds – Converts a given date of, year, day of year, and seconds of day to seconds from J2000. Contained in ias_time.py

convert_j2000_seconds_to_year_doy_sod – Converts seconds from J2000 to a date. Contained in ias_time.py

is_leap_year – Determines if a given year is a leap year. Contained in ias_time.py

ias_cpf.py – File that contains a few routines for working with a L8 IAS CPF.

get_cpf_parameter - For a given CPF parameter return the value. Contained within ias_cpf.py

get_cpf_value – For a given CPF parameter return value. This function will return a single value or an array of values.

get_cpf_groups – Stupid dump of all CPF parameters. Poorly named as finding groups. Contained in ias_cpf.py but not used.

get_cpf_earth_orientation_parameters – Return UTC-UT1 parameters. Contained in ias_cpf.py but not used.

get_cpf_leap_seconds – Returns number of total leap seconds.

ias_error.py – log_error – Way to try to mimic the IAS error logging in Python.

build_tirs_fit_model.py – File that tries to mimic the inner workings of the SSM Model Fit GUI. Script reads the files that simulate the output from the database tables and then calls the tirs_fit_ssm_model executable for generating new SSM model coefficients and a new estimated SSM table file for a given event. The script tries to work directly with what are described as the potential tables and database queries that will occur with the SSM model fit process but that are in an ASCII format for the prototype.

The Python code is invoked with the following command:
python ./build_tirs_fit_model.py
Usage: build_tirs_encoder_file.py <telemetry file> <SSM calibration data file> <event id> <end date> <cpf file> <combined observation output file>

An example execution of this Python script would be:
python ./build_tirs_fit_model.py \
 ./tirs_telemetry.dat \
 ./tirs_cal.csv \
 11 \
 02/17/2015:11:00:00 \
 ./L8CPF20141001_20141231.02 \
 ./tirs_encoder.csv

Where:
tirs_telemetry.dat 	– Telemetry data extracted from database.
tirs_cal.dat 		– SSM TIRS calibration data extracted from database.
11 			– Number of switch event that will be used in process.
02/17/2015:11:00:00 	– Month, day of month, year, time of day that estimated SSM table file will be calculated out to.	
tirs_encoder.csv 	– Combine telemetry calibration that will be input to SSM fit executable.

The Python script will create an ODL file, TIRS_ENCODER.odl, which will be used as the input to the tirs_fit_ssm_model executable. By invoking the Python script the tirs_fit_ssm_model executable is also invoked. That executable will print to standard output (the screen) the newly calculated coefficients, write to disk a report file containing the results of the fit, and create a new estimated SSM file that has a date range spanning the beginning of the switch event to the date and time given as input to the Python script. The final step is to display the telemetry, calibration, and model data along with the difference between the model to the telemetry and calibration data.

MJC1: Some additional notes on the prototype implementation:
1) Adding a switch event or updating the model table is a matter of editing the ASCII files associated with the prototype.
2) Related to 1) above, once the Python script is run it does not modify any of the ASCII files (like the model file that lists all the models) that take the place of the database tables.
3) There are some sanity checks listed in the ADD, especially related to the events table, that are not performed in the prototype.
4) Since at this point only the SSM origin and number of leap seconds is needed for the prototype it really doesn’t matter which CPF is used just as long as the most recent leap second table is present.
Procedure
The TIRS SSM Model Fit Algorithm is used for on-orbit estimation of the TIRS scene select mechanism position time history while operating in open loop (mode-0) control. This algorithm is necessary to provide the SSM position information needed to process TIRS data collected in mode 0 with sufficient accuracy to meet the TIRS-to-OLI band registration, and the TIRS image registration, geodetic accuracy, and geometric accuracy requirements.

Mathematical Background
During the TIRS SSM anomaly of December 2014 through March 2015 it was determined experimentally that when released from closed loop control, the SSM reacts to the residual magnetic torque in the motor by moving, rapidly at first, and then at a decaying rate, away from the nominal nadir pointing position. It was found that the magnitude and variability of this post-switch motion can be reduced by applying decreasing-sized motor motions in alternate directions prior to releasing the SSM. This so-called “pendulum” maneuver is the planned operational implementation of mode 4 (closed loop) to mode 0 (open loop) switch operations if and when those become necessary to extend mission life.

An empirical model was fitted to the measured SSM positions following mode 0 switching events to allow predictions of SSM position for future times and to smooth/regularize the image-based measurements used to monitor SSM position in the absence of SSM encoder data. This model includes an initial position offset, a position rate/slope parameter, and three decaying exponential terms with time constants varying from a few minutes to several days. The form of the model is:

				(1)

Where:
P(t) = SSM position offset from nominal nadir position (in counts) as a function of time from switch to mode 0 (t). The time is shown in units of both seconds and days to simplify the presentation of the equation by hiding the conversion factors.

a0 = Initial constant offset parameter (in counts).

a1 = Magnitude of the first (short time constant) exponential decay term (in counts).

a2 = Magnitude of the second (medium time constant) exponential decay term (in counts).

a3 = Magnitude of the third (long time constant) exponential decay term (in counts).

1 = Time constant (in seconds) of the first exponential decay term.

2 = Time constant (in days) of the second exponential decay term.

3 = Time constant (in days) of the third exponential decay term.

S = Slope (long term rate) of SSM motion (in counts per day).

The parameters of this non-linear equation are solved for using measurements of SSM position derived from direct encoder telemetry (where available immediately after the switch) and from calibration scenes processed through the TIRS Scene Select Mechanism (SSM) Calibration Algorithm (refer to the algorithm description document of the same name for details) to generate scene-average SSM position estimates. The current best estimates of the parameter values are used as the starting point for a Taylor series expansion linearization of equation (1). This linearization requires the partial derivatives of the P(t) equation with respect to each of the eight model parameters:

		(2)

Where:
			(3)

 = The vector of parameter values after the ith iteration.

		(4)

 = The vector of parameter value corrections for the current iteration.

								(5a)

						(5b)

						(5c)

						(5d)

						(5e)

						(5f)

						(5g)

								(5h)

 = The partial derivatives of the model equation with respect to the 8 parameters.

For each observation, the vector of partial derivatives, evaluated at the current parameter values and the time of the observation, provide the linearized observation coefficients:

			(6)

 = The vector of partial derivatives for observation j.

The linearized measurement, Bj, is the difference between the measured value of SSM position, Pj, and the value predicted by the model using the current model parameter values:

								(7)

 = The difference between the measured position for observation j and the current position model evaluated at the current parameter values and the jth observation time.

Each observation gets a weight based upon its source, encoder telemetry or calibration scene estimate, since the actual encoder observations are more precise than the image-based measurements. In each case the weight is the inverse of the estimated variance of the measurement.

							(8)

The linearized coefficients, measurements, and weights for each observation are used to assemble the normal equations for a weighted least squares solution for the parameter correction vector:

								(9a)

								(9b)

									(9c)

								(9d)

With this formulation, individual parameters can be removed from the solution by manipulating the normal equations directly. Specifically, by zeroing out the column (in N) and row (in N and C) associated with the parameter to be deleted and inserting a value of 1 in the diagonal element of N corresponding to the deleted observation. This forces the correction for that parameter to be zero.

A priori pseudo-observations can also be injected to limit, but not fully constrain, the adjustment allowed for a particular, poorly observed, parameter. This is accomplished by adding a weight term to the diagonal element of N corresponding to the parameter, and adding the difference between the initial value of the parameter and the current estimated value of the parameter, multiplied by the weight term, to the element of C corresponding to the parameter. The weight term should be equal to the inverse of the estimated variance of the initial parameter value (i.e., 1/2). For example, to add an a priori observation to parameter i, set N(i,i) = N(i,i) + 1/2 and C(i) = C(i) + (0(i) – (i))/2 where 0(i) is the initial value of parameter i and (i) is the current (last iteration) value of parameter i.

The iterative solution continues until it converges, i.e., the calculated corrections are acceptably small. The final set of parameter values can then be used to calculate the final observation residuals using equation (7) above.

Procedure Overview
The TIRS SSM model fit algorithm is a GUI-driven procedure that performs all steps necessary to create and update SSM position model parameters for user-defined SSM mode switch events, and to generate the corresponding table of SSM positions over time required by the IAS/LPGS Level 1 processing system. The operation of this GUI and the actions of the underlying sub-algorithms that execute the computation tasks directed by the GUI are described in the following:

1. GUI queries TIRS_SSM_Mode0_Switch_Event table and displays events in descending time order with the most recent first.
a. Events are displayed as switch ID, year, day of year, second of day (to whole second precision).
2. User selects from four options:
a. Add new SSM switch event. MJC2: In the prototype, adding and editing events is done by editing the events ASCII file.
b. Edit existing SSM switch event.
c. Fit SSM position model.
d. Generate SSM position table.
3. User selects option (via button) to add new event:
a. User can enter year, day of year, second of day, or
b. User can enter year, month, day, hour, minute, second.
c. Calculate the time difference (in seconds) between the newly entered switch event and all pre-existing switch events.
d. If any are within 6000 seconds (1 orbit) of the new event, issue a fatal error message containing the date/time of the nearby event, delete the new event, and go back to the main display.
e. If any are within 86400 seconds (1 day) of the new record, issue a warning message containing the date/time of the nearby event but proceed to add the new event.
f. Unique switch event ID/sequence number is assigned automatically as key.
g. Use the CPF service to retrieve the CPF applicable to the date/time of the new switch event. MJC3: The prototype does not use the CPF service, an appropriate CPF must be provided as an input.
h. Create an initial model record for the new switch event in the TIRS_SSM_Mode0_Model_Parameters table. MJC4: In the prototype, the default model is created by hand by editing the model file. The latest parameters from the previous interval are used in this case.
i. Execute the Create Default SSM Position Model sub-algorithm (see below).
i. Switch event table is redisplayed with the newly entered event included.
4. User selects option (via button) to edit an existing event:
a. Switch event table is displayed and user is prompted to select the event to edit.
b. The selected event year, day of year, and second of day fields are presented in an editable window.
c. User can edit year, day of year, and/or second of day.
d. Calculate the time difference (in seconds) between the revised switch event and all other switch events.
e. If any are within 6000 seconds (1 orbit) of the new event, issue an error message containing the date/time of the nearby event, restore the original (un-edited) event date/time values, and redisplay the editable window.
f. Update the event date/time in the TIRS_SSM_Mode0_Switch_Event table.
g. Redisplay the switch event table with the edited event included.
h. Note: No provision is currently made for deleting (or deactivating) events as this would require hunting down and cleaning up associated model parameter records and SSM position data. Nevertheless, in a full-up operational environment, such a capability would be highly desirable.
5. User selects option (via button) to fit SSM position model:
a. User selects event to model from displayed list of switch events, sorted into decreasing time order (most recent on top).
b. Capture the selected event date/time.
c. If the selected event is the most recent (last/top) event in the event list, set the event end time to the current date/time.
d. If the selected event is not the most recent event in the event list, set the event end time to the time of the next (later/higher) event in the list.
e. Use the CPF service to retrieve the CPF applicable to the date/time of the selected switch event.
f. GUI queries TIRS_SSM_Mode0_Model_Parameters table to find models associated with the selected SWITCH_ID, ordering the results by Date_Added. NOTE: It would be useful to have the capability to manually disable model records.
g. If at least one model record is returned, select the record with the latest Date_Added value of those with a Date_Disabled value of NULL (there should only be one that is not disabled).
h. If no valid (Date_Disabled = NULL) model records are returned, execute the Create Default SSM Position Model sub-algorithm and then repeat the query.
i. Display the contents of the selected TIRS_SSM_Mode0_Model_Parameters record to the user.
j. Pass the required input parameters to the Fit SSM Position Model sub-algorithm including:
i. CPF pathname,
ii. Current switch event date/time,
iii. Switch event end date/time (current time or time of next event),
iv. Current TIRS_SSM_Mode0_Model_Parameters record values.
k. Execute the Fit SSM Position Model sub-algorithm (see below).
l. Display the results of the model fit algorithm to the user including:
i. The initial model parameters from the TIRS_SSM_Mode0_Model_Parameters table as above.
ii. The new fitted model parameters prior to entry into the TIRS_SSM_Mode0_Model_Parameters table.
iii. Scrollable table of TIRS SSM position telemetry and calibration scene measurements, and associated model fit residuals. Include for each entry:
1. Time from switch event in seconds (to whole seconds),
2. Time from switch event in days (to 0.001 days),
3. Telemetry/calibration scene encoder position measurement (in counts),
4. Model fit encoder position (in counts),
5. Residual difference (in counts).
iv. RMS fit statistics in both counts and microradians.
v. Optional: Generate a plot (X axis is days since event, Y axis is encoder value) containing the measured encoder positions and the corresponding model values for SSM position at the same times.
vi. Accept and Reject buttons for the user to indicate whether or not the new model fit is to be included in the database.
m. If the user rejects the new model, do not create a new database entry and return to the main switch event list display.
n. If the user accepts the new model:
i. Select all existing model records associated with the current switch event that have the Date_Disabled field set to NULL, and change the Date_Disabled field to the current date/time.
ii. Create a unique model ID for the new entry.
iii. Set the Date_Added field to the current date/time.
iv. Set the Date_Disabled field to NULL.
v. Add the new model parameter record to the TIRS_SSM_Mode0_Model_Parameters table.
vi. Return to the main switch event list display.
6. User selects option (via button) to generate the SSM position table. MJC5: This is not optional in the prototype, the output SSM position table is always generated. Currently, the prototype only operates on a single event/model.
a. Prompt the user to enter the desired SSM position table start date/time and end date/time:
i. Set the default start date/time as the first switch event time – 60 seconds. MJC6: This time window is used to select events to process but the prototype only operates on one event at a time.
ii. User can update default year, day of year, second of day.
iii. If the entered time is later than the last switch event date/date, issue an error message and use the default start date/time.
iv. Set the default end date/time as the last switch event time + 14 days.
v. User can update default year, day of year, second of day.
vi. If the entered time is earlier than the start date/time, issue an error message and use the default end date/time.
b. For each event in the TIRS_SSM_Mode0_Switch_Event table that falls between the selected start date/time and end date/time:
i. Query TIRS_SSM_Mode0_Model_Parameters table to find valid models (Date_Disabled field set to NULL) associated with the current SWITCH_ID, ordering the results by Date_Added.
ii. If at least one valid model record is returned, select the record with the latest Date_Added.
iii. If no valid model records are returned, execute the Create Default SSM Position Model sub-algorithm and then repeat the query.
iv. Set the model start time to the current switch event time.
v. If this is the most recent (last) event in the event list, set the event end time to the user entered SSM position table end date/time.
vi. If the selected event is not the most recent event in the event list, set the event end time to the time of the next event in the list – 60 seconds.
vii. Construct a table of switch events to process with each record containing event start date/time, end date/time, and model parameters, with one record per switch event.
c. Invoke the Generate SSM Position Table sub-algorithm (see below), passing it the table of switch event records as input.
d. Display the results of the SSM position table generation to the user including:
i. Scrollable table of TIRS SSM position estimates with associated date/time:
1. Year, day of year, and second of day for position estimate.
2. SSM position estimate in absolute encoder counts.
ii. Accept and Reject buttons for the user to indicate whether or not the new SSM position table is to be retained or deleted.
e. If the new positions are accepted, query the SSM mode 0 position estimate table for active records (i.e., records with a NULL Date_Disabled field within the time span of the newly generated records.
i. Update the Date_Disabled field for these records to the current date/time.
ii. For all newly generated records that have times later than the most recent event time, set the quality flag to 1 (= updated/preliminary).
iii. For all newly generated records that have times earlier than the most recent switch event time, set the quality flag to 2 (= final).
iv. For all newly generated records that have times later than the current date/time, set the quality flag to 0 (= predicted).
v. Insert the newly generated records into the SSM mode 0 position estimate table with the Date_Added field set to the current date and the Date_Disabled field set to NULL.
Create Default SSM Position Model Sub-Algorithm
1. Capture the date/time of the event for which default parameters are being computed.
2. For each event in the TIRS_SSM_Mode0_Switch_Event table:
a. Query TIRS_SSM_Mode0_Model_Parameters table to find valid models (Date_Disabled field set to NULL) associated with the current SWITCH_ID, ordering the results by Date_Added.
b. If more than one valid model record is returned, select the record with the latest Date_Added.
3. For the interactive version of this capability:
a. Display a scrollable table showing the valid model parameter sets in descending time order (most recent on top).
b. Include a check box beside each parameter set, selected by default, which the user can deselect (or reselect) as desired.
c. Include a message requesting the user to “Select existing model parameter sets to use in computing default model.”
d. Display a button that the user can select to compute the default model parameter values.
4. For the automated version of this capability, pass the full list of selected valid model records to the default parameter generation computation.
5. When default model parameter generation is selected, compute the default parameters as follows (MJC7: Automatic default parameter generation is not implemented in the prototype.):
a. Set the switch ID to the ID for the current switch event.
b. Set the algorithm version number to be the same as the previous model parameter set (i.e., the parameters for the event preceding the current one).
c. Set the encoder nadir value to be the same as the previous model parameter set (i.e., the parameters for the switch event preceding the current switch event).
d. Set the ai, i, and slope parameters as the average of the corresponding values from the selected model records.
e. Set the Date_Added flag to the current date.
f. Set the Date_Disabled flag to NULL.
6. For the interactive version of this capability:
a. Display the generated model parameter record to the user for Accept/Reject.
b. If Reject go back to the main display.
7. For the automated version of this capability, accept the results of the calculation.
8. When the results are accepted, insert the default records into the TIRS_SSM_Mode0_Model_Parameters table, generating a unique Model ID as a key.
Fit SSM Position Model Sub-Algorithm
1. Read the model fit input parameters provided by the invoking GUI including:
a. CPF pathname,
b. Mode switch event time as year, day of year, seconds of day (UTC),
c. Mode switch event end time as year, day of year, seconds of day (UTC),
d. Initial values for SSM pointing model parameters including:
i. ID of associated switch event,
ii. Model algorithm version number,
iii. Encoder nadir reference count,
iv. Initial encoder offset parameter (A0),
v. First orbit exponential magnitude and time constant (A1 and Tau1),
vi. First day exponential magnitude and time constant (A2 and Tau2),
vii. First week exponential magnitude and time constant (A3 and Tau3),
viii. Long term encoder trend slope (S).
e. Use these initial values as the starting point for the iterative solution and retain the initial values for subsequent use in a priori observations for poorly observed parameters (see below).
2. Load the CPF and initialize the time conversion logic (including leap second table).
3. Gather SSM pointing observations from the database:
a. Query the ancillary data table(s) for valid encoder telemetry following the mode switch.
i. Convert the switch event start and end times to seconds from the spacecraft clock’s J2000 epoch using the IAS library time conversion logic.
ii. Convert the seconds from epoch to days from epoch and seconds of day from epoch.
iii. Submit a time-based query to the TIRS_TELEMETRY_COMMAND and TIRS_TELEMETRY_CIRCUIT tables using the L0R_TIME_DAYS_FROM_J2000 and L0R_TIME_SEC_OF_DAY to retrieve records falling inside the switch event start and end times that contain non-zero encoder values tagged as being in mode 0 (SSM_MECH_MODE = 0) with the encoder powered and indexed (MC_ENCODER_FLAGS = 9 – bits 0 and 3 set), selecting the following fields (see sample query in Figure 1):
1. L0R_TIME_DAYS_FROM_J2000 – record time in days since epoch.
2. L0R_TIME_SEC_OF_DAY – record time in seconds of day.
3. ELEC_ENABLED_FLAGS – flag that indicates which set of electronics are in use (side A or side B).
4. MC_ENCODER_FLAGS – flag that indicates whether or not the SSM encoder is powered and whether or not it has been indexed.
5. SSM_MECH_MODE – SSM encoder operating mode (e.g., 0 or 4).
6. SSM_ENCODER_POSITION_SAMPLE_2 – second of up to 21 encoder samples in the current ancillary data record. The second sample is used to avoid potential problems with high/low data word misalignment that can occur in the first and last samples in each ancillary data record.
[image:]
Figure 1: Sample Ancillary Data Table Query.

Note that the start day (5528) and second of day (23291) and end day (5535) and second of day (29281) in Figure 1 are for illustrative purposes only.

iv. For each record returned by the query, compute the time from switch event start by subtracting the switch event start time from the record time stamp.
v. Set the standard deviation for this observation to the default value for telemetry observations, nominally 4 counts.
vi. Thin the returned data set to avoid overloading the subsequent model fit with encoder samples from the first few seconds of the event:
1. Delete all samples that are less than 60 seconds from the switch event start time. This helps mitigate the uncertainty in the start time.
2. If more than 100 records were returned, retain only records where the time from the switch event is an integer multiple of 20 seconds. This preserves 1-2 points per scene giving the telemetry-based measurements approximately the same granularity as the scene-based image measurements.
vii. If at least one valid record was returned, examine the ELEC_ENABLED_FLAGS field to determine the electronics side:
1. If bit 0 is set (elec_enabled_flags & 0x01 > 0) then side A electronics.
2. If bit 1 is set (elec_enabled_flags & 0x02 > 0) then side B electronics.
3. Convert the appropriate TIRS SSM origin angle (in radians) from the CPF (SSM_Encoder_Origin_SideA or SSM_Encoder_Origin_SideB) to units of encoder counts (radians * 2^24 / 2) and round off to the nearest multiple of 4 counts to reflect the fact that the SSM encoder data are actually 22-bit values packaged in a 24-bit field.
4. Replace the initial value of the encoder nadir reference count with the (converted) value from the CPF.
5. Check the valid encoder values for the high-bit reset condition (i.e., the “mode 10” problem).
a. If (encoder value & 0x00FFF000) = 0x00FFF000 then all 12 high bits are set and require correction.
b. If correction is required, calculate the nominal values of the high 12 bits from the previous valid encoder value. If this is the first encoder sample, use the nadir encoder value as the previous value:
i. high_12 = previous value & 0x00FFF000.
c. And replace the erroneous bits with the nominal values:
i. new encoder = (old encoder & 0x00000FFF) | high_12
b. Query the TIRS_SSM_ESTIMATION and TIRS_SSM_ESTIMATION_SCA tables to retrieve SSM calibration scene results from the time period between the mode-switch event’s start and end times. In this case the query will use the UTC event times rather than the spacecraft J2000 epoch times.
i. Time based query joining ESTIMATION and ESTIMATION_SCA tables.
ii. Combine record triplets (by SCA) into a single record for each scene.
iii. Reduce multiple SCA stats to a single Fit_Quality statistic by calculating the net RMS fit statistic as:
netRMS = sqrt(((SCA01_X2 + SCA01_Y2) * SCA01_Num
 + (SCA02_X2 + SCA02_Y2) * SCA02_Num
 + (SCA03_X2 + SCA03_Y2) * SCA03_Num) / 2)
iv. Suppress poor measurements based upon fit quality statistic and (user-defined) threshold. MJC8: The prototype excludes scenes with net RMSE statistics of 35 microradians or larger.
v. For each valid record, calculate the time from switch event start by subtracting the switch event start time from the measurement record time.
vi. Set the standard deviation for this observation to the default value for scene observations, nominally 20 counts.
4. Analyze the time period spanned by the combined telemetry and scene-based SSM position measurements to determine the model parameterization to use.
a. Count the total number of valid observations, telemetry plus scene-based, (N).
b. If no valid observations were found (N=0), return an error message to that effect and exit.
c. Find the latest (largest) time of observation relative to the switch event (Tmax).
d. Count the number of observations with times between 2000 seconds and 6000 seconds from switch event (N1).
e. Count the number of observations with times between 6000 seconds and 86400 seconds from switch event (N2).
f. Count the number of observations between 1 day and 7 days from switch event (N3).
g. Set the parameterization based upon the maximum observation time as follows:
i. If Tmax < 2000 seconds, solve for a0 only.
ii. Else if Tmax < 1 day, solve for a0, a1, and T1.
iii. Else if Tmax < 7 days, solve for a0, a1, a2, T1, and T2.
iv. Else if Tmax < 12 days, solve for a0, a1, a2, a3, T1, T2, and S.
v. Else solve for a0, a1, a2, a3, T1, T2, T3, and S.
h. Check for critical gaps in the available position observations and add a priori observations if necessary to stabilize the solution. A priori observations are applied to the diagonal elements of the normal equation matrix and the corresponding constant vector term. They are effectively artificial measurements that set the corresponding parameter correction to the difference between the nominal value and the current value with a weight that is appropriate for the expected stability of each parameter.
i. If N1 = 0, then a1 and T1 are poorly observed so add a priori observations for a1 and T1. The a priori standard deviations for a1 and T1 are nominally 30 counts and 150 seconds, respectively.
ii. If N2 = 0, then a2 and T2 are poorly observed so add a priori observations for a2 and T2. The a priori standard deviations for a2 and T2 are nominally 50 counts and 0.025 days, respectively.
iii. If N3 = 0, then a3 is poorly observed so add an a priori observation for a3. The a priori standard deviation for a3 is nominally 30 counts.
5. Perform an iterative least squares solution for the model parameter corrections.
a. Initialize the normal equation matrices to all zeros.
b. Iterate until convergence or iteration limit is reached:
i. For each observation:
1. Calculate the parameter partial derivatives using the current parameter value estimates and the time of observation and store the partial derivatives in a vector, v.
2. Calculate the difference between the observed SSM position and the position predicted by the pointing model using the current parameter value estimates, d = observed position – modeled position.
3. Calculate the weight for this observation as, w = 1/(standard deviation)2.
4. Add the current observation to the normal equations by:
a. Add the contribution for this observation to the normal equation matrix: Q = Q + v w vT	where Q is N by N (N being 8, the number of model parameters), v is N by 1 and w is a scalar.
b. Add the contribution for this observation to the constant vector: c = c + v w d	where c is N by 1 and d is a scalar.
ii. Add the a priori observations if necessary:
1. If an a priori observation is needed for parameter j, calculate the weight as: w = 1/(standard deviation)2 	and add this value to the (j,j) diagonal element of the normal equation matrix, Q, and add this value times the difference between the initial parameter value and the current parameter value to the jth element of c.
iii. Solve the normal equations as: x = Q-1 c	 where x is the N by 1 vector of parameter corrections for this iteration.
iv. Add the corrections to the current best estimates of the parameter values.
v. Increment the iteration counter.
vi. If the iteration count is greater than the iteration limit, issue a warning message and exit the iteration loop.
vii. Test the solution for convergence:
1. Normalize each correction term by dividing it by its convergence threshold. For a0, a1, a2, and a3 the threshold is 0.05 counts. For T1 it is 0.05 seconds. For T2 and T3 it is 0.0005 days and for S it is 0.0005 counts per day.
2. Compute the square root of the sum of the squares of the normalized correction values.
3. If this number is less than 1, the solution has converged, exit the iteration loop. Otherwise, go on to the next iteration.
c. Calculate fit statistics.
i. For each observation:
1. Calculate the residual difference between the observed SSM position and the position predicted by the pointing model using the final parameter value estimates, d = observed position – modeled position.
2. Add this residual to the observation record.
3. If this is a telemetry observation, add the square of the residual to the telemetry fit statistic and increment the telemetry observation count.
4. If this is a scene observation, add the square of the residual to the scene fit statistic and increment the scene observation count.
ii. Compute fit statistics by observation type and net:
1. If number of telemetry observations is > 0, telem_fit = root-mean-square of the telemetry observation residuals.
2. If number of scene observations is > 0, scene_fit = root-mean-square of the scene observation residuals.
3. Sum the telemetry and scene squared residuals and observation counts to compute the net fit statistic as: net_fit = root-mean-square of all observation residuals.
d. Return the final best estimate of the parameter values and the fit statistics.
e. Return the observation records, with model fit residuals.
6. Generate a report containing the final model parameters, summary fit statistics, and observation data with model fit residuals.
Generate SSM Position Table Sub-Algorithm
1. Read the input file containing switch event records, each of which includes the event start date/time, end date/time, and SSM pointing model parameters for one mode switch event.
a. Note: The packaging and dissemination of the SSM position table information could be accomplished in multiple ways, for example, as a single file containing the entire SSM pointing history; as a set of files each containing the SSM position data for a single switch event period; or as a set of files each containing the SSM position data for all switch events required to span a particular time period, such as a calendar quarter. This sub-algorithm is largely agnostic in this regard, requiring only that it be provided with a list of switch event records which it will use to evaluate SSM position data for the time period covered by the input switch events.
2. For each switch event:
a. Construct the time span covered by the event as follows:
i. Initial time, T0, is event start date/time.
ii. If this is not the last event in the list, the event duration is the next event’s start date/time – T0 – 60 seconds, otherwise it is 15 days (converted to seconds).
iii. Note: It is anticipated that switch events will be created when they are planned, nominally 2-3 days prior to the actual event. With a nominal interval between switch events of 14 days, this should provide SSM position data coverage of all mode 0 time periods with at least predicted values, prior to the receipt of any mode 0 TIRS data. If a gap of more than 15 days between switch events is expected, a dummy event should be created for some time in the future to force generation of the necessary SSM position data.
b. Generate the times (from switch) at which SSM position samples are to be generated.
i. Load the table of sampling intervals.
1. This table identifies the start times (in seconds from switch) and sampling intervals (in seconds) to use to generate the SSM position data. Each row in the table defines one sample spacing regime. Since the SSM position changes quickly at first and then more slowly as it begins to settle, the sampling intervals are short initially and gradually become longer.
[image:]
Figure 2: Nominal SSM Position Sampling Table

2. For each row, read the start time from switch (in seconds) and the corresponding sampling interval (in seconds).
ii. Use the table to generate the sampling times:
1. The first time, T[0], is the first start time in the sampling interval table, start time[0].
2. Initialize time loop variable i = 0 and interval loop variable k =0.
3. While T[i] < event duration:
a. While T[i] < the next start time in the sampling interval table:
i. T[i+1] = T[i] + sampling interval[k].
ii. Increment i: i = i + 1.
b. If k is less than the last index in the sampling table, increment k: k = k + 1, and set T[i] = start time[k].
c. Evaluate the SSM pointing model at each sampling time.
i. Loop on the sample number, i:
1. Evaluate the model, adding the nominal nadir pointing encoder reading to the modeled offset from nadir:
a. Tseconds = T[i]
b. Tdays = T[i] / 86400
c.
2. Add the time offset, T0, to the event time and construct the full sample date/time as year, day of year, and second of day.
3. Return the results of the SSM position table generation as a table of TIRS SSM position estimates with associated date/time:
a. Year, day of year, and second of day for position estimate.
b. SSM position estimate in absolute encoder counts.
Figures 3, 4, and 5 show the top level process flows for the overall SSM model fit algorithm, not just the least squares fit to the encoder and measured data, Add Event, Fit Model, and Generate Positions operations are available through a set of IAS utilities that help create the end-to-end steps needed in order to perform the calibration of the SSMs’ behavior. These diagrams are intended to show the high level process flow and should not be construed as comprehensive data flow diagrams.

[bookmark: _Ref212034230][bookmark: _Toc212035497][image:]

Figure 3: Add SSM Mode Switch Event Process Flow

[image:]
Figure 4: Fit SSM Model Process Flow

[image:]
Figure 5: Generate SSM Position Table Process Flow

6.3.8.7. Algorithm Output Details
The TIRS SSM model fit algorithm populates three new database tables: 1) an SSM mode switch event table (defined in Table 1) that uniquely identifies each mode switch event and stores the associated event date and time; 2) an SSM mode 0 model parameter table (defined in Table 2) that stores the model parameter values needed to generate SSM position estimates as a function of time; and 3) an SSM mode 0 position table (defined in Table 3) containing the actual SSM position estimates spanning the period of mode 0 operations, generated using the model parameters.

	SSM Mode Switch Event Table
	Units
	Field Type

	 Switch event ID (key)
	-
	Sequence

	 Event year
	Years
	Integer

	 Event day of year
	Days
	Integer

	 Event seconds of day (UTC)
	Seconds
	Integer

Table 1: TIRS SSM Mode Switch Event Table Contents

The switch event ID field is suggested as an Oracle sequence but any mechanism for yielding uniquely identifiable records that can be easily referenced from other tables is acceptable.

	SSM Mode 0 Model Parameters Table
	Units
	Field Type

	 Model ID (key)
	-
	Sequence

	 Associated mode switch ID (link to SSM Mode Switch Event Table)
	-
	External Key

	 Algorithm version number
	-
	Integer

	 Encoder Nadir Position
	Counts
	Integer

	 Constant Offset from Nadir (a0)
	Counts
	Double

	 First Exponential Magnitude (a1)
	Counts
	Double

	 Second Exponential Magnitude (a2)
	Counts
	Double

	 Third Exponential Magnitude (a3)
	Counts
	Double

	 First Exponential Time Constant (1)
	Seconds
	Double

	 Second Exponential Time Constant (2)
	Days
	Double

	 Third Exponential Time Constant (3)
	Days
	Double

	 Long Term Slope (S) (in counts per day)
	Counts per Day
	Double

	 Date Added (date and time to nearest second)
	Seconds
	Oracle Date

	 Date Disabled (NULL or date and time to nearest second)
	Seconds
	Oracle Date

Table 2: TIRS SSM Mode 0 Model Parameter Table Contents

The model ID field is suggested as an Oracle sequence but any mechanism for yielding uniquely identifiable records that can be easily referenced from other tables is acceptable. The algorithm version number would most conveniently be stored in a software #define statement as it would only change with code updates. MJC9: The prototype currently implements a valid flag field instead of the date added and date disabled fields.

	[bookmark: _Hlk507668656]SSM Mode 0 Position Estimate Table
	Units
	Field Type

	 Year
	Years
	Integer

	 Day of year
	Days
	Integer

	 Seconds of day (UTC)
	Seconds
	Integer

	 Encoder position
	Counts
	Integer

	 Quality flag:
 0 = predicted (i.e., generated before the event)
 1 = updated/preliminary (i.e., generated during the event)
 2 = final (i.e., generated after the event)
	-
	Integer

	 Associated model ID (link to SSM Mode 0 Model Parameters Table)
	-
	External Key

	 Date Added (date and time to nearest second)
	Seconds
	Oracle Date

	 Date Disabled (NULL or date and time to nearest second)
	Seconds
	Oracle Date

Table 3: TIRS SSM Mode 0 Position Estimate Table Contents

The contents of the SSM mode 0 position estimate table can would be written to one or more ASCII text file(s) for dissemination to external users (e.g., International Cooperators). Only the first five fields (year, day of year, seconds of day, encoder position, and quality flag) would be included in the file output with regards to the SSM position. The details of this file generation and dissemination procedure, including file naming convention, version control, file time coverage (e.g., single file, annual files, quarterly files), and distribution mechanism are left as implementation details. The assumption made in the prototype implementation is that a single file covering the full Landsat 8 mission will be generated and updated as necessary to support mode-0 data processing. This approach was taken to allow the prototype to generate output files that can be used by the current IAS/LPGS software. The header to this file contains the format version, creation date, start date, end date, and number of records. The contents for this file is shown in figure 4.

	SSM Mode 0 Position Estimate Table ASCII Format
	Units
	Field Type

	Format Version
	
	Integer

	Creation Date
	YYYY:DOY:SOD UTC
	String

	Start Date
	YYYY:DOY:SOD UTC
	

	End Date
	YYYY:DOY:SOD UTC
	

	Number Records
	
	Integer

	For each SSM Mirror Record
	
	Integer

	 Year
	Years
	Integer

	 Day of year
	Days
	Integer

	 Seconds of day (UTC)
	Seconds
	Integer

	 Encoder position
	Counts
	Integer

	 Quality flag:
 0 = predicted (i.e., generated before the event)
 1 = updated/preliminary (i.e., generated during the event)
 2 = final (i.e., generated after the event)
	-
	Integer

Table 4: TIRS SSM Mode 0 Position Estimate Table Contents ASCII Version

The contents of the output TIRS SSM model fit report file are summarized in Table 54. Note that the first four fields listed are part of the standard report header. Most of this information (other than the standard report header) is presented to the user prior to acceptance of the model fit as valid. MJC10: The prototype does not follow the specified output report template exactly, but the operational implementation should. We will work to make the prototype as similar as possible so that any tools built to parse this file will work on both the prototype and operational versions.

	Field
	Description

	Date and time
	Date (day of week, month, day of month, year) and time of file creation.

	Spacecraft and instrument source
	L8 and TIRS

	Processing center
	EROS

	Software version
	Software version used to create report

	Associated mode switch event ID
	Mode switch event sequence number

	Mode switch date and time
	Year, day of year, seconds of day (UTC)

	Original model ID
	ID of model used as starting point

	Algorithm version
	Version number of algorithm used to create original model

	Encoder nadir
	Nadir reference value (in counts)

	Original a0
	Original value of constant offset from nadir (in counts)

	Original a1
	Original value of first exponential magnitude (in counts)

	Original a2
	Original value of second exponential magnitude (in counts)

	Original a3
	Original value of third exponential magnitude (in counts)

	Original 1
	Original value of first exponential time constant (in seconds)

	Original 2
	Original value of second exponential time constant (in days)

	Original 3
	Original value of third exponential time constant (in days)

	Original slope
	Original value of long term slope (in counts per day)

	Original model date
	Date/time original model was created

	Updated model ID
	ID of newly created model

	Algorithm version
	Version number of algorithm used to create updated model

	Encoder nadir
	Nadir reference value (in counts)

	Updated a0
	Updated value of constant offset from nadir (in counts)

	Updated a1
	Updated value of first exponential magnitude (in counts)

	Updated a2
	Updated value of second exponential magnitude (in counts)

	Updated a3
	Updated value of third exponential magnitude (in counts)

	Updated 1
	Updated value of first exponential time constant (in seconds)

	Updated 2
	Updated value of second exponential time constant (in days)

	Updated 3
	Updated value of third exponential time constant (in days)

	Updated slope
	Updated value of long term slope (in counts per day)

	Updated model date
	Date/time updated model was created

	Telemetry RMSE
	RMS fit residual for telemetry observations

	Image RMSE
	RMS fit residual for image observations

	Combined RMSE
	RMS fit residual for all observations

	Telemetry count
	Number of telemetry observations

	Image count
	Number of image observations

	Total count
	Total number of observations

	Observation Records:
	For each observation used in the fit:

	Observation date/time
	Year, day of year, seconds of day

	Seconds from mode switch
	Observation time offset, in seconds, from mode switch event

	Days from mode switch
	Observation time offset, in days, from mode switch event

	Observation type
	Type of observation: telemetry or image

	Measured position
	Measured position in encoder counts

	Modeled position
	Final modeled position in encoder counts

	Position residual
	Position residual (measured minus modeled) in encoder counts

Table 54: TIRS SSM Model Fit Report Details

Verification Methods
MJC11: Test cases for the prototype were built using data from the mode 0 interval following the 11-13-2015 pendulum test.

The prototype TIRS SSM model fit application is run using ASCII flat files to take the place of the new database tables proposed by this algorithm and by the TIRS SSM calibration algorithm. User input via the proposed GUI and overall process control is simulated by a python wrapper that assembles the required inputs and invokes the C application that implements the core algorithm operations. Processing parameters that would be provided via the GUI or, by default, from the CPF are instead provided as command line parameters when the python wrapper is invoked. The python code then assembles an input ODL file that transmits the inputs to the C application.

Test data and results reside on l8srlald01 under: /data2/cvtk_test_data/geometry/tirs_fit_ssm_model/ver4.0.

To run the TIRS SSM model fit process:
1) Check out code from subversion.
L8SRLALD01> svn checkout https://edclxs131:18080/svn/l8/tags/calval/phase4/tirs_fit_ssm_model_4.0
2) Source environment variable assignment script(s) in the local IAS build directory to set up the build environment.
3) Run make in the tirs_fit_ssm_model directory.
L8SRLALD01>make

The python code uses the numpy and matplotlib packages. These items will need to be installed on whatever system this portion of the prototype code is run, if they are not already installed.

This TIRS telemetry database input uses existing tables created to store TIRS ancillary data, so this interface is the most realistic. The other input sources use ASCII flat files to store mode switch event information, SSM model parameters, and SSM calibration scene results. The python code collects the telemetry and scene-based measurements into a single observation file for use by the prototype model fit application. The other model fit inputs come from the input ODL file. The contents of the ODL input file TIRS_SSM_MODEL_FIT.odl are as follows:

OBJECT = TIRS_SSM_MODEL_FIT
 SCRIPT_NAME = TIRS_SSM_MODEL_FIT
 WO_DIRECTORY = “.”
 INITIAL_VALUES = (a0, a1, a2, a3, tau1, tau2, tau3, S)
 TIRS_ENCODER_FILE_NAME = “tirs_encoder.csv”
 TIRS_RESULTS_FILE_NAME = “tirs_ssm_model_fit.rpt”
 MODEL_FIT_TYPE = “IAS_NONLINEAR”
 TIRS_OUTPUT_FILE_NAME = “est_ssm_encoder.data”
 ENCODER_VALUE0 = 16574079.0
 EVENT_END_TIME = (2015.0, 331.0, 0.000)
 PROCESSING_PASS = 2
END_OBJECT = TIRS_SSM_MODEL_FIT
END

The input ODL file (TIRS_SSM_MODEL_FIT.odl), telemetry query results file (tirs_telemetry-event-19.dat), SSM calibration scene results file (tirs_side-b.cal.csv), the input event list file (TIRS_SSM_Mode0_Switch_Event.csv), the input/output model parameter file (TIRS_SSM_Mode0_Model_Parameters.csv), and the output SSM position table file (est_ssm_encoder.data) are all contained in the test data directory noted above. The output report file is called tirs_ssm_model_fit.rpt. Data or information that is to be trended can be found in the report file generated as output.

Python Test Case:
The data interfacing and plotting prototype, basically the python code can be invoked with the following command:
python ./build_tirs_fit_model.py \
 ./tirs_telemetry-event-19.dat \
 ./tirs_side-b.cal.csv \
 19 \
 11/27/2015:00:00:00 \
 ./L8CPF20151102_20151231.03 \
 ./tirs_encoder.csv

This test demonstrates some of the interfaces to external sources, the integration of the information extracted from these external sources, the plotting of some of the results, some of the outlier logic needed for the calibration results, and calls the SSM modeling code. Output from this step will be ODL file needed for tirs_fit_ssm_model (TIRS_SSM_MODEL_FIT.odl), the encoder values needed for tirs_fit_ssm_model (tirs_encoder.csv), the corresponding report and table files (tirs_ssm_model_fit.rpt, est_ssm_encoder.data), and a file calculating the error between mid-points of the encoder table (tirs_ssm_model_fit_verify.dat).

TIRS Fit SSM Model Test Cases:

There are 13 other test cases that focus specifically on the model fitting portion of the algorithm. These test cases are performed by invoking the tirs_fit_ssm_model executable with a given set of encoder values and ODL files. All the input and output files use the naming convention shown below, containing the file identifiers listed in table 5.

ODL File names – TIRS_SSM_MODEL_FIT.odl.File_name_identifier_TC
Input and output file name, which are also listed in ODL files themselves:
Input Encoder Data – File_name_identifier.csv
Output report file – tirs_ssm_model_fit.File_name_identifier_TC.rpt
Output Encoder Table – tirs_table.File_name_identifier_TC.data

Test case is run by calling the tirs_ssm_model_fit executable directly:
./tirs_fit_ssm_model .TIRS_SSM_MODEL_FIT.odl.File_name_identifier

	Test Case
	File name identifier
	Purpose

	TC#1
	Greater_12Day
	Contains data with a time range that goes beyond 12 days so that all the SSM model parameters can be fitted.

	TC#2
	Less_12Day
	Contains data with a time range of just less than 12 days. The τ3 parameter will not be solved for.

	TC#3
	Greater_7Day
	Contains data with a time range that goes just beyond 7 days. The τ3 parameter will not be solved for.

	TC#4
	Less_7Day
	Contains data with a time range of just less than 7 days. The a3, τ3 and the S parameters will not be solved for.

	TC#5
	Greater_1Day
	Contains data with a time range that goes just beyond 1 days. The a3, τ3 and the S parameters will not be solved for.

	TC#6
	Less_1Day
	Contains data with a time range of just less than 1 day. The a2, a3, τ2, τ3 and the S parameters will not be solved for.

	TC#7
	Greater_2000_Secs
	Contains data with a time range of that goes just beyond 2000 seconds. The a2, a3, τ2, τ3 and the S parameters will not be solved for.

	TC#8
	Less_2000_Secs
	Contains data with a time range of just less than 2000 seconds. The a1, a2, a3, τ1, τ2, τ3 and the S parameters will not be solved for.

	TC#9
	Less_1Day_N1
	Contains data with a time range of less than 1 day and there are not any points between 2000 and 6000 seconds. The a2, a3, τ2, τ3 and the S parameters will not be solved for, a1 and τ1 are poorly conditioned.

	TC#10
	Greater_1Day_N2
	Contains data with a time range of greater than 1 day and there are not any points between 6000 and 86400 seconds. The a3, τ3 and the S parameters will not be solved for, a2 and τ2 are poorly conditioned.

	TC#11
	Greater_1Day_N1_N2
	Contains data with a time range of greater than 1 day and there are not any points between 6000 and 86400 seconds. The a3, τ3 and the S parameters will not be solved for, a2 and τ2 are poorly conditioned.

	TC#12
	Greater_7Day_N3
	Contains data with a time range of greater than 1 day and there are not any points between 2000 and 6000 seconds or 6000 and 86400 seconds. The a3, τ3 and the S parameters will not be solved for, a1, a2, τ1 and τ2 are poorly conditioned.
./tirs_fit_ssm_model ./TIRS_SSM_MODEL_FIT.odl.Greater_1Day_N1_N2_TC

	TC#13
	Python
	Produces the same results as running the python test case.

Table 5: SSM Model Fit Test Cases

Test Case #1
Contains data with a time range that goes beyond 12 days so that all the SSM model parameters can be fitted.
./tirs_fit_ssm_model ./TIRS_SSM_MODEL_FIT.odl.Greater_12Day_TC
Outputs:
tirs_table.Greater_12Day_TC.data
tirs_ssm_model_fit.Greater_12Day_TC.rpt

Test Case #2
Contains data between a time range of less than 12 days. The τ3 parameter will not be solved for.
./tirs_fit_ssm_model ./TIRS_SSM_MODEL_FIT.odl.Less_12Day_TC
Outputs:
tirs_table.Less_12Day_TC.data
tirs_ssm_model_fit.Less_12Day_TC.rpt

Test Case #3
Contains data with a time range that goes just beyond 7 days. The τ3 parameter will not be solved for.
./tirs_fit_ssm_model ./TIRS_SSM_MODEL_FIT.odl.Greater_7Day_TC
Outputs:
tirs_table.Greater_7Day_TC.data
tirs_ssm_model_fit.Greater_7Day_TC.rpt

Test Case #4
Contains data between a time range of less than 7 days. The a3, τ3 and the S parameters will not be solved for.
./tirs_fit_ssm_model ./TIRS_SSM_MODEL_FIT.odl.Less_7Day_TC
Outputs:
tirs_table.Less_7Day_TC.data
tirs_ssm_model_fit.Less_7Day_TC.rpt

Test Case #5
Contains data with a time range that goes just beyond 1 days. The a3, τ3 and the S parameters will not be solved for.
./tirs_fit_ssm_model ./TIRS_SSM_MODEL_FIT.odl.Greater_1Day_TC
Outputs:
tirs_table.Greater_1Day_TC.data
tirs_ssm_model_fit.Greater_1Day_TC.rpt

Test Case #6
Contains data between a time range of less than 1 day. The a2, a3, τ2, τ3 and the S parameters will not be solved for.
./tirs_fit_ssm_model ./TIRS_SSM_MODEL_FIT.odl.Less_1Day_TC
Outputs:
tirs_table.Less_1Day_TC.data
tirs_ssm_model_fit.Less_1Day_TC.rpt

Test Case #7
Contains data between a time range of greater than 2000 seconds. The a2, a3, τ2, τ3 and the S parameters will not be solved for.
./tirs_fit_ssm_model ./TIRS_SSM_MODEL_FIT.odl.Greaer_2000_Secs_TC
Outputs:
tirs_table.Greater_2000_Secs_TC.data
tirs_ssm_model_fit.Greater_2000_Secs_TC.rpt

Test Case #8
Contains data between a time range of less than 2000 seconds. The a1, a2, a3, τ1, τ2, τ3 and the S parameters will not be solved for.
./tirs_fit_ssm_model ./TIRS_SSM_MODEL_FIT.odl.Less_2000_Secs_TC
Outputs:
tirs_table.Less_2000_Secs_TC.data
tirs_ssm_model_fit.Less_2000_Secs_TC.rpt

Test Case #9
Contains data between a time range of less than 1 day and there are not any points between 2000 and 6000 seconds. The a2, a3, τ2, τ3 and the S parameters will not be solved for, a1 and τ1 are poorly conditioned.
./tirs_fit_ssm_model ./TIRS_SSM_MODEL_FIT.odl.Less_1Day_N1_TC
Outputs:
tirs_table.Less_1Day_N1_TC.data
tirs_ssm_model_fit.Less_1Day_N1_TC.rpt

Test Case #10
Contains data with a time range of greater than 1 day and there are not any points between 6000 and 86400 seconds. The a3, τ3 and the S parameters will not be solved for, a2 and τ2 are poorly conditioned.
./tirs_fit_ssm_model ./TIRS_SSM_MODEL_FIT.odl.Greater_1Day_N2_TC
Outputs:
tirs_table.Greater_1Day_N2_TC.data
tirs_ssm_model_fit.Greater_1Day_N2_TC.rpt

Test Case #11
Contains data with a time range of greater than 1 day and there are not any points between 2000 and 6000 seconds or 6000 and 86400 seconds. The a3, τ3 and the S parameters will not be solved for, a1, a2, τ1 and τ2 are poorly conditioned.
./tirs_fit_ssm_model ./TIRS_SSM_MODEL_FIT.odl.Greater_1Day_N1_N2_TC
Outputs:
tirs_table.Greater_1Day_N1_N2_TC.data
tirs_ssm_model_fit.Greater_1Day_N1_N2_TC.rpt

Results from implementation of tirs_fit_ssm_model should match those generated from the prototype.
6.3.8.8. Maturity
Although it uses some standard least squares tools from the IAS code base, this algorithm and associated prototype have little heritage. The proposed algorithm procedure is also unusual in that it is centered on a proposed graphical user interface application that provides user interaction, process control, and database access functions. The prototype does not fully implement the GUI function but instead provides a command line driven version of the process control logic that accesses external data files instead of, in most cases, yet-to-be created database tables. This approach allows the prototype to be a useful tool for emergency operations prior to the availability of the full algorithm capability and serves as a template for a potential command-line oriented early release of the algorithm implementation.
6.3.8.9. [bookmark: _GoBack]Notes
Some assumptions, limitations, and implementation notes include:
1. The model fitting procedure is designed to work with data created as a result of executing nominal alternate SSM operations concept mode switch procedures. This implies that: 1) the mode switch will follow a “pendulum” maneuver to reduce the magnitude of subsequent SSM motion; 2) a reasonable amount (~2000 seconds, minimum) of encoder data will be captured following the mode switch; 3) the SSM will remain in mode 0 long enough to collect sufficient data to model its trajectory, nominally for 14 days but for at least 7 days; and 4) no extreme off-nadir spacecraft maneuvers (i.e., lunar calibrations) occur during the mode 0 period. Mode switch events that do not conform to these conditions are not expected to achieve acceptable model fits using this algorithm. This excludes most of the mode switch events during the initial SSM anomaly period from December 2014 to March 2015.
2. As a consequence of note #1, above, the SSM position table must be preloaded with externally generated SSM position records for mode 0 time periods that cannot be successfully modeled with the current algorithm. This applies to the original side A SSM anomaly time period.
3. The parameters identified as new CPF parameters could also be stored in an algorithm-specific configuration file, since they have no relevance for external users of Landsat 8 data.

Review History
[TB01] In the background section toward the end of the first paragraph there is a phrase which reads “which are unavailable when operating in the open loop mode-0” should that also include something like “with the SSM encoder turned off”?
You are correct; it’s not mode-0 per se that makes the encoder data unavailable, it’s the encoder being turned off.

[TB02] The background talks about 3 sub-functions but the inputs table lists 4. The text right before the inputs table also mentions 3. Maybe you are considering the “Add Event” and “Edit Event” as a single sub-function.
I added references to the “Edit Event” function as a distinct sub-function in the Background section.

[TB03] From an implementation standpoint, does the full GUI need to be in the first release of this capability? Or could it be implemented as a set of command line tools, some of which can make graphs and display them? Making and tweaking a GUI layout could delay the release if this needs to go operational.
That’s a very good idea. Some words in support of this approach have been added to the Prototype section.

[TB04] Should all the new CPF parameters go into a new “TIRS SSM Model Fit” group?
That’s what I was thinking.

[TB05] Note #3 indicates that the new parameters could go into an algorithm-specific configuration file. Is there a chance that the parameters could change over time? For example, would we need to use different values for the parameters in 2017 versus 2015? If so, putting them in the CPF seems like a good idea. However, if the parameters definitely won’t vary over time, an algorithm-specific configuration file is a possibility. It kind of depends on what is easier for you and Mike to manage.
I don’t expect them to change over time but we don’t really know. We may discover that there are seasonal thermal effects that vary the behavior somewhat over the year. This might argue for inclusion in the CPF.

[TB06] In the prototype code section, are you still using the -m32 compiler flag which builds 32-bit code? If so, it should probably be removed since our standard is to build 64-bit code and we do not often build/test 32-bit mode for the IAS code.
No, we don’t use that anymore with the prototypes we build on top of the IAS code base. That’s a vestige of ADDs past.

[TB07] In the procedure overview for the note in 4.h, would the associated model parameter records and SSM position data really need to be deleted? Maybe just deactivating those would be sufficient? Especially if the data was there long enough to be included in a generated position file. We could include a column in the switch event table to disable an entry there and potentially cascade that down to the other tables that have records based on that switch event.
I agree, deactivation is a better way to do it.

[TB08] Typo: 6.a.vi says “start date/date” when I think “start date/time” is what was intended
Yes, that’s been fixed.

[TB09] The procedure defined here seems to be entirely tied to the GUI and requires manual approval of the results. Would we ever want/need to fully automate this if it got to be so routine that the results always looked good? If so, we’d probably want to have options to allow doing the same operations from the command line. Or maybe we just build command line tools that can do it all and have the GUI call those for the different operations… Update: a bit later in the document, it does refer to automated versions of the capability, so it does seem to indicate that the GUI use needs to be optional.
Developing the algorithm in a command-line mode first should also make it easier to automate in the long run – another reason to take that approach.

[TB10] In 6.e, it would probably be helpful to define what quality flag values of 0, 1 and 2 mean here. They are defined later in the document in Table 3, but that is a quite a bit later in the document.
Good idea, that’s been added.

[TB11] When getting SSM_ENCODER_POSITION_SAMPLE_2 from the database, do we need to worry about potential roll-over between the low and high words of misaligned samples?
I suppose there is still a pathological case in which the encoder value changes just before or just after the second sample, in a way that could make the high-order/low-order word shifted in from an adjacent sample inappropriate for use with the current low-order/high-order word, but that seems pretty unlikely given how slowly the encoder values change, and is a low enough risk to not be worth the effort to protect against it.

[TB12] The work-in-progress TIRS SSM calibration algorithm is using the geometric_work_order_common table for a number of the fields referenced in that ADD (for example, the acquisition date and date processed). So, the query of the TIRS_SSM_ESTIMATION and TIRS_SSM_ESTIMATION_SCA tables will also need to join in the geometric_work_order_common table. Just wanted to confirm that is acceptable.
That’s fine. Since the TIRS_SSM_ESTIMATION tables don’t actually exist yet the details of that query were left somewhat vague.

[TB13] For the “Generate SSM Position Table Sub-Algorithm”, step 1 starts with “Read the input file…”, and lists a number of things in the file. In the IAS implementation, would most of that really be obtained by querying the database tables (except the start/end times)?
You are correct that this information really comes from the database tables but the mental model I had been using was that all DB interaction is actually done by the GUI which then passes the results as files to the “service” applications that do the model fitting and generate the SSM position table. That’s the context in which the sub-algorithm is said to “read the input file” but this is really an implementation design decision on which the algorithm should be agnostic.

[TB14] For Table 2, the “Algorithm version number” has a field type of “Text”. Are you envisioning version numbers like “3.6.1”? If so, maybe drop the “number” from the field name since it isn’t really a number. Otherwise if it will be a simple version (i.e. 1, 2, 3, 4, etc), an integer would seem appropriate along with keeping “number” in the name.
I hadn’t thought about it very carefully one way or the other. I suppose we ought to look at this sort of the same way we are using GCP version numbers and just make them integers. I have updated the table accordingly.

	13
image1.emf
select

 TIRS_TELEMETRY_COMMAND.L0R_TIME_DAYS_FROM_J2000,

 TIRS_TELEMETRY_COMMAND.L0R_TIME_SEC_OF_DAY,

 TIRS_TELEMETRY_CIRCUIT.ELEC_ENABLED_FLAGS,

 TIRS_TELEMETRY_COMMAND.MC_ENCODER_FLAGS,

 TIRS_TELEMETRY_COMMAND.SSM_MECH_MODE,

 TIRS_TELEMETRY_COMMAND.SSM_ENCODER_POSITION_SAMPLE_2

 from TIRS_TELEMETRY_CO MMAND, TIRS_TELEMETRY_CIRCUIT

 where

 TIRS_TELEMETRY_COMMAND.L0R_TIME_DAYS_FROM_J2000 =

 TIRS_TELEMETRY_CIRCUIT.L0R_TIME_DAYS_FROM_J2000 AND

 TIRS_TELEMETRY_COMMAND.L0R_TIME_SEC_OF_DAY =

 TIRS_TELEMETRY_CIRCUIT.L0R_TIME_SEC_OF_DAY AND

 ((TIRS_TELEMETRY_COMMAND.L0R_ TIME_DAYS_FROM_J2000 = 5528 AND

 TIRS_TELEMETRY_COMMAND.L0R_TIME_SEC_OF_DAY > 23291) OR

 TIRS_TELEMETRY_COMMAND.L0R_TIME_DAYS_FROM_J2000 > 5528) AND

 ((TIRS_TELEMETRY_COMMAND.L0R_TIME_DAYS_FROM_J2000 = 5535 AND

 TIRS_TELEMETRY_COMMAND.L0R_TIME_SEC_OF_DAY < 29281) OR

 TIRS_TELEMETRY_COMMAND.L0R_TIME_DAYS_FROM_J2000 < 5535) AND

 TIRS_TELEMETRY_COMMAND.MC_ENCODER_FLAGS = 9 AND

 TIRS_TELEMETRY_COMMAND.SSM_MECH_MODE = 0 AND

 TIRS_TELEMETRY_COMMAND .SSM_ENCODER_POSITION_SAMPLE_2 > 0

 order by TIRS_TELEMETRY_COMMAND.L0R_TIME_DAYS_FROM_J2000,

 TIRS_TELEMETRY_COMMAND.L0R_TIME_SEC_OF_DAY;

image2.emf
Start SecDelta SecDD:HH:MM:SS

606000:00:01:00

60012000:00:10:00

120018000:00:20:00

210030000:00:35:00

360060000:01:00:00

8400120000:02:20:00

14400240000:04:00:00

21600360000:06:00:00

43200720000:12:00:00

864001080001:00:00:00

1296001440001:12:00:00

2160002160002:12:00:00

6048004320007:00:00:00

6912008640008:00:00:00

image3.png

image4.png

image5.png

