Section 1 [bookmark: _Toc345687753][bookmark: _Toc350351952][bookmark: _Ref385594278][bookmark: _Toc476818600][bookmark: _Toc340837510]
Section 2
Section 3
Section 4
Section 5
Section 6
6.1
6.2
6.2.1
6.2.2
6.2.3
6.2.4
Terrain Occlusion Mask Generation Algorithm
[bookmark: _Toc340837511][bookmark: _Toc345687754]Background/Introduction
The heritage Landsat and ALI/EO-1 image resampling procedures ignored the possibility of multiple terrain intersections due to off-nadir viewing toward the edges of the imaging swath. This was a reasonable simplification for Landsat with its fixed nadir viewing geometry. Although the ALI was capable of off-nadir pointing, this capability was mostly used to acquire different portions of the nominal Landsat swath, given that the ALI’s focal plane was only 20 percent populated. Furthermore, EO-1 was a technology demonstration project with a minimal budget for ground processing algorithm development, so Landsat capabilities were reused as-is wherever possible.

[bookmark: _GoBack]Ignoring the multiple terrain intersection effect is less defensible for the pointable OLILandsat 8/9, which will routinelybe acquireing off-nadir scenes from adjacent WRS paths in small, but significant numbers, for product generation. The approach to this problem adopted here is to compute the ground locations where the OLI line-of-sight is obstructed by terrain, and provide this information in a mask. The image resampling logic will be permitted to populate all output image pixels with apparent values according to the heritage algorithm. Some of these will be erroneous data that actually represent terrain intersection points closer to the imaging sensor. These can be subsequently identified, and if appropriate, replaced with fill by the user, based on the contents of the terrain occlusion mask generated by this algorithm. This approach was felt to be preferable to inserting fill in the product image, as some image exploitation algorithms (e.g., control point mensuration) are sensitive to the presence of fill.

Generating the terrain occlusion mask can also be performed without reference to the output image itself, requiring only the DEM (registered to the product image output space) and the LOS projection grid as inputs. For each pixel in the output image, the algorithm uses the grid file to locate the corresponding pixel in the input (L1R) space. It then uses the grid to compute the output space line/sample location corresponding to the same input line/sample at the maximum elevation plane. The line connecting the original output pixel location with the maximum elevation location corresponds to the projection of that pixel’s line-of-sight into output space. By interpolating elevation model heights for points along this line and comparing them to the computed LOS height, terrain intersection points that are closer to the imager can be detected. Each point in the output terrain occlusion mask will be flagged as either visible or occluded by terrain occlusion.

This is a new algorithm with no ALIAS or Landsat heritage, although it will make extensive use of the library functions that access the grid file.
[bookmark: _Toc340837512][bookmark: _Toc345687755]Dependencies
The terrain occlusion algorithm assumes that the LOS Projection and Gridding algorithm (ADD 6.2.2) has created the output product LOS projection grid and that the DEM has been resampled to match the output product frame. The elevation planes in the LOS projection grid must span the range of elevations in the elevation model.
[bookmark: _Toc340837513][bookmark: _Toc345687756]Inputs
The terrain occlusion algorithm and its component sub-algorithms use the inputs listed in the following table. Note that some of these “inputs” are implementation conveniences (e.g., using an ODL parameter file to convey the values of and pointers to the input data).

	Algorithm Inputs

	ODL file (implementation)

	OLI Grid file

	DEM Grid file

	Original Unresampled DEM file

	Terrain Occlusion Mask file name

	Terrain Occlusion band

[bookmark: _Toc340837514][bookmark: _Toc345687757]Outputs
	 TO (terrain occlusion) mask file

	 TO mask data descriptor record (DDR) (see note 4)

	 TO mask image

[bookmark: _Toc340837515][bookmark: _Toc345687758]Options
None.
[bookmark: _Toc340837516][bookmark: _Toc345687759]Procedure
Read the unresampled DEM to determine the maximum elevation within the file (maximum_elevation).
Initialize the terrain mask to 0.
For each SCA:
For each output pixel:
1. Retrieve the elevation for the current output pixel location (current elevation) from the DEM.
a. Using the DEM resampling grid, map the L1TP output pixel location to geographic unresampled DEM line/sample location.
i. Calculate grid cell row and column index.
grid row = output line / number grid cell lines
grid col = output sample / number grid cell samples
ii. Determine grid cell number.
grid cell number = grid row * number grid cell samples + 					grid col
iii. Look up grid mapping coefficients based on grid cell.	
coeff = grid cell coefficient reverse[grid cell number].
iv. Calculate DEM line/sample location.	
	DEM line = coeff.line[0] +
		output sample * coeff.line[1] +
		output line * coeff.line[2] +
		output sample * output line * coeff[3].line
	DEM sample = coeff.sample[0] +
		output sample * coeff.sample[1] +
		output line * coeff.sample[2] +
		output sample * output line * coeff[3].sample
a. Perform bilinear interpolation at location in DEM from step 1a) to determine elevation of current L1TP output location.
i. Determine subpixel location
Integer line = (int)DEM line
Integer sample = (int) DEM sample
ds = DEM sample – Integer sample
dl = DEM line – Integer line
ii. Determine location in DEM image buffer.
dem_ns = number samples in DEM
dem_nl = number lines in DEM
loc = Integer line * dem_ns + Integer Sample
iii. Interpolate elevation for floating point location.
elevation =
 (1.0 - ds) * (1.0 - dl) * dem.data[loc] +
 ds * (1.0 - dl) *dem.data[loc+1] +
 (1.0 - ds) *dl * dem.data[loc+dem_ns] +
 ds * dl * dem->data[loc+dem_ns + 1]
Note:
For off-nadir images, pixel line-of-sight ground projections can extend outside of the product image area. Using the unresampled DEM as the source of elevation data should prevent elevations from being needed outside of the available data range as the terrain occlusion calculation performs its “stepping process.” However, a check to ensure that the elevation being retrieved is greater than 0 in line and sample while less than dem_nl-1 and dem_ns-1 should be implemented. The process should issue a warning that the data to be retrieved is outside of the DEM, and return the DEM elevation value for the closest edge line/sample position (i.e., clip the DEM line/sample values at the DEM edges).
2. Run ols2ils (OLI Resampling Algorithm ADD 6.2.4) to find the input location for the corresponding output location. This will be based on the elevation for current output pixels (lc,sc).
3. FRun get_output_ls for the input location calculated in 2) calculate to find the corresponding output location for the maximum elevation (lm,sm) (OLI Resampling Algorithm ADD 6.2.4).
4. Define the parametric equation for a line that connects (lc,sc) to (lm,sm).
	sp = s0 + t * f
	lp = l0 + t * g
where: [image:]
At t=0: lp=lc and sp=sc.
At t=1: lp=lm and sp=sm
	Therefore
l0 = lc,
s0=sc,
g=(lm-lc),
f=(sm-sc)
5. Compute the length of the line in output space:

6. Compute the increment of t to use to walk along the line:

7. Walk along the line in increments of t, testing each point for terrain occlusion:
For j = 0 to (int)ceil(1/Δt)
 t = j * t
8. Calculate the point of intersection:
lp = l0 + t * g
sp = s0 + t * f
9. Round (lp,sp) to get (lp',sp'). Find the elevation for (lp',sp') (pixel elevation) using the DEM resampling grid as described in steps 1a) and 1b) above.
10. The value of t represents the ratio used to measure whether the elevation of 	(lp',sp') is large enough to obscure the current pixel of interest (lc,sc).
	if((t * maximum elevation + (1.0-t) * current elevation) < pixel elevation)
 	 Current pixel location (lc,sc) is occluded. Set the terrain mask to 1 and exit loop.
	else
 	 Current pixel location (lc,sc) is not occluded. Continue to loop.

Determining Elevation (change from using co-registered DEM)

Due to the “walk-a-line” process of step 7) of the previous procedure, the location of an elevation requested could reside outside of the co-registered DEM used in creating the L1TP. To account for this, the unresampled DEM and DEM geomgrid (used to resample the DEM) arecan be used for terrain occlusion calculations instead of the co-registered DEM.to map points from these points outside of the L1T geographic extent to that within the unresampled DEM. Since the unresampled DEM should extend outside the boundary of the L1TP, this will allow the retrieval of elevations outside the product image extent.
[bookmark: _Toc340837517][bookmark: _Toc345687760]Prototype Code
The following is a list of the routines files associated with the prototype code and a brief explanation of the purpose of each.

calc_dem_bounds
Takes an image data structure and returns the minimum and maximum values of the data values present. This process defines the boundaries of the searching, or equations, to determine if a pixel has been occluded by another pixel.

getpar
Reads input parameters from an ODL file. Input includes the LOS projection grid, coregistered DEM, and the band (or number of bands) to be inspected for pixel occlusion.

occ_get_elevation
Calculates pixel, or elevation, DN from an image data buffer using bilinear interpolation. Input is an IMAGE data structure and floating point location for DN calculation.

occlusion_get_geo
Uses the generic resampling grid to map points from the L1T output location to the unresampled DEM location. Mapping is done through bilinear mapping coefficients stored within the generic grid.

occlusion
Main driver for calculating the terrain occlusion mask. Calls getpar to retrieve the input parameters, reads the LOS projection grid, reads the DEM file, calls the calc_dem_bounds to determine the bounds on the DEM file, calls the terrain_occlusion_mask to calculate mask, frees LOS projection grid from memory, writes occlusion mask to a flat file, and calls write_envi_hdr to create an ENVI header file for occlusion mask.

oli_get_dem
Reads DEM file storing elevation and geographic information into the image data structure. Calls several IPE L1G HDF5 routines for reading the DEM file.

terrain_occlusion_mask
Module that calculates the terrain occlusion mask. The procedure section above lists the equations and steps present within this module. The occlusion mask is calculated using several subroutines present within the terrain_occlusion_mask file:
	terrain_occlusion_mask: The main driver for all functions in the 					terrain_occlusion_mask file. Takes an input of the LOS projection grid, 			SCA number, elevation data structure, maximum elevation present within 	coregistered DEM, and creates a terrain occlusion mask.
	calc_occ_line_eq: Calculates the parametric equations for a line joining two 			points.
	occlusion_build_params: Calculates the length of the line in output space and 			increment of t parameters.
	map_to_input_occlusion: Maps an output space location to an input space 				location.
	calc_occ_scale: Calculates the scale needed to determine if a current pixel is 			occluded.

write_envi_hdr
Writes out an ENVI header for the occlusion mask.

Prototype dependencies:
1. Input is an HDF4 heritage grid file.
2. DEM file is an HDF5 L1G image file.
[bookmark: _Toc340837518][bookmark: _Toc345687761]Maturity
1. The problem of multiple terrain intersections needs to be addressed, particularly for off-nadir acquisitions. A terrain occlusion mask will be generated to identify these obstructed pixels (see note #1 below for additional details), but the current thinking is that it would not alter the behavior of the resampler, as sprinkling fill pixels throughout a product image can wreak havoc with some applications. Generating a separate terrain occlusion mask will allow users to evaluate the extent of the problem and apply the mask if appropriate to a particular application.
2. The algorithm does not account for detector-specific even/odd and deselect offsets. It generates the mask based on nominal detector locations.
3. The need to have the L1R image available to detect within-image fill conditions (due to nominal detector/band shifting) is overtaken by events, since nominal detector/band alignment fill is not used.
4. The current prototype/test version has only been run on ALI imagery. The processing of generating the mask is currently integrated within the ALIAS resampler code.
5. Early testing with OLI simulated data showed difficulty in defining what portion of a pixel is obstructed, or what portion of another pixel is leading to the obstruction. This may lead to further tweaking of defining the search areas and variables involved in calculating masked pixels; however, the underlying principles of the algorithm should remain the same.
[bookmark: _Toc340837519][bookmark: _Toc345687762]Notes
Some additional background assumptions and notes include the following:

1. The new logic required to calculate the terrain occlusion mask (particularly for off-nadir scenes) is documented here, but may be implemented as part of the resampling software for processing efficiency. The Terrain Occlusion (TO) mask output by this algorithm is also included as a possible (to be resolved) output in the resampling algorithm.
2. The current concept is to allow the user to specify the band(s) to use in testing for occlusion. However, for the terrain mask that is to accompany the L1TP L8/9 product, generation of the mask for the SWIR1 band should be sufficient.
3. The problem of multiple terrain intersections needs to be addressed, particularly for off-nadir acquisitions. A terrain occlusion mask will be generated to identify these obstructed pixels, but the current thinking is that it would not alter the behavior of the resampler, as sprinkling fill pixels throughout a product image can wreak havoc with some applications. Generating a separate terrain occlusion mask will allow users to evaluate the extent of the problem and apply the mask if appropriate to a particular application.

1. Early testing with ALI data showed few pixels being marked as masked. This, along with off-nadir imaging not being a standard product, may lead to changes in how this algorithm will be used during processing and product generation.
2. The DDR will be a component of the output TO mask image file, capturing the metadata necessary to relate mask image pixels to ground positions. The Resampling ADD (REF _Ref385594353 \r \h 6.2.4) addresses this structure in more detail.

image1.wmf
1

0

£

£

t

image2.wmf
2

2

)

(

)

(

,

1

(

c

m

c

m

l

l

s

s

MAX

d

-

+

-

=

oleObject1.bin

image3.wmf
2

)

1

,

,

(

d

l

l

s

s

MAX

t

c

m

c

m

-

-

=

D

oleObject2.bin

