Landsat 8 Algorithm Description Document

Version 4.0b

TIRS Modulation Transfer Function Compensation (MTFC) Algorithm
Background/Introduction
The TIRS instrument exhibited poorer than intended spatial performance during thermal vacuum testing that resulted in a waiver being granted prior to the launch of Landsat 8. Though originally believed/hoped to have been largely due to ground support equipment limitations, the degraded performance was confirmed by on-orbit measurements, and was subsequently traced to the non-ideal behavior of the QWIP detectors. A reconstruction filter, derived from the pre-launch model of TIRS spatial performance, can be used to improve the spatial response of the processed data. Unfortunately, this comes at some cost in the form of overshoot (ringing) and the unwanted enhancement of noise and residual radiometric artifacts such as detector-to-detector striping.
The details of the formulation of the reconstruction filter(s) are beyond the scope of this algorithm. For present purposes, the filter kernels will be taken as given inputs which are to be applied to the Level 1R (radiometrically corrected but geometrically raw) TIRS data. Nevertheless, in the interest of providing context, the reconstruction filters are created using the following procedure:

1. Construct a model of actual TIRS spatial performance in the form of a system transfer function. The functions derived during pre-launch thermal vacuum testing serve this purpose.

2. Construct a model of the nominal or desired TIRS spatial response, i.e., a nominal system transfer function that would just meet the spatial specifications.

3. In the frequency domain, divide the nominal transfer function by the actual transfer function out to the frequency at which the actual response goes below the system noise floor (estimated from the SNR), to yield the filter transfer function.
4. Window the resulting filter transfer function to suppress filter frequencies that are above the TIRS Nyquist frequency.
5. Transform the filter transfer function into the space domain to form a filter kernel.

6. Window the filter kernel to the desired size, and renormalize.

Due to variations in spatial performance between bands and even across the TIRS focal plane, separate filters were derived for each TIRS band and SCA. The kernels are all zero phase (i.e., symmetric) by design to avoid introducing any geometric shifts.
This algorithm describes the procedure whereby the TIRS MTFC kernels are applied to the TIRS Level 1R image data, just prior to image resampling. While conceptually a straightforward convolution operation, a slight complication is introduced by the Level 1R image geometry – specifically the presence of geometrically offset detector samples from the redundant detector row. The TIRS geometric model identifies those detectors taken from the redundant row as well as the magnitude of the row offset. Using this information, the convolution operator shifts the filter kernel weights in the line direction to compensate. Once the filter has been applied to the TIRS image samples within each SCA, the updated data are written back into the original L1R image file. This avoids the creation of another large file and reduces the impact to the image processing flow.
The spatial sharpening applied by this algorithm has been shown to improve TIRS/OLI image correlation accuracy. So, even if it is never used for standard TIRS L1TP product generation, this capability contributes to the TIRS Alignment Calibration and TIRS SSM Calibration procedures as an optional processing step.
Dependencies

The TIRS MTFC algorithm assumes that TIRS radiometric correction processing has created the Level 1R image file and that a LOS model has been created. Both the systematic LOS model and the precision LOS model contain the information needed by this algorithm, so either would work.
Inputs
The TIRS MTFC algorithm uses the inputs listed in the following table. Note that some of these “inputs” are implementation conveniences (e.g., using an ODL parameter file to convey the values of and pointers to the input data).
	Algorithm Inputs

	ODL File (implementation)

	 CPF File Name

	 Level 1R File Name

	 LOS Model File Name (either Systematic or Precision LOS Model File will work)

	 Band List

	CPF file contents (prototype implementation stores the MTFC kernels in the CPF)

	 MTFC Kernel Dimensions

	 MTFC Kernel Weights (one set per band/SCA)

	Level 1R image file contents

	 Radiometrically corrected image samples organized by band and SCA

	LOS Model file contents (see TIRS LOS Model Creation ADD for details)

	 Detector offset/delay table (detector offsets for each detector in each band) – from CPF

	 Nominal detector alignment fill table

	 L0R detector alignment Fill Table

Outputs

	Updated Level 1R Image File

	 Radiometrically corrected spatially sharpened image samples organized by band and SCA

Options

None.
Prototype Code

The prototype code is tagged in the SubVersion repository at:

https://edclxs131:18080/svn/l8/tags/calval/phase4/tirs_mtfc_4.0
and the prototype input and output files are located on l8srlald01 under /data2/cvtk_test_data/geometry/tirs_ mtfc/ver4.0. Input to the executable is an ODL file; output is a HDF5 formatted level 1R file.

The prototype code was compiled with the following options when creating the test data files:

-g -Wall –O2 -march=nocona –m64 –mfpmath=sse –msse2

Note that the prototype code was built using the Landsat 8 IAS code base (IAS_3_7_0_OPS), in which TIRS and OLI processing is combined. The code was thus designed to bypass OLI data or logic where appropriate (e.g., by scanning the combined band list to extract only the TIRS bands).

The following text is a brief description of the main set of modules used within the prototype with each module listed along with a very short description. It should be noted that not all library modules are referenced in the explanations below.
tirs_mtfc
Main driver for filtering the TIRS level 1R image. Calls modules to retrieve user parameters, load the required geometric model and CPF data, set up the MTFC filter kernels, and process each TIRS band in the input L1R image.

read_parameters
This routine opens the input ODL parameter file and the work order OMF file, reads the required parameters, closes the parameter file(s), and stores the parameters in persistent variables for subsequent retrieval by accessor functions.

process_parameters
Reduce the input band list (from the ODL file) to contain only TIRS bands.
ias_model_read
IAS library routine that reads the geometric model file and populates data within the geometric model structure.

ias_cpf_read

IAS library routine modified to read and load the CPF, including the new MTFC kernel parameters, into the CPF data structure.
ias_cpf_get_tirs_mtfc_kernels

New IAS library routine (in ias_cpf_read.c) to, if necessary, load the new MTFC kernel parameters from the CPF file using the new ias_cpf_parse_tirs_mtfc_kernels routine, and return a pointer to the new IAS_CPF_TIRS_MTFC_KERNELS data structure portion of the CPF data structure.
ias_cpf_parse_tirs_mtfc_kernels

New IAS library routine (in ias_cpf_parse_tirs_mtfc_kernels.c) to read and load the new MTFC kernel parameters from the CPF file into the CPF data structure.
open_input_image
Modified IAS routine (from resample) to open the input L1R file for read/write access. Suppresses option to operate on L0R data and radiance rescaling for L1R data.
kernel_setup
Loads an internal filter kernel structure with the MTFC filter kernels read from the CPF.
process_band
Modified IAS routine (from resample) to apply the MTFC filters to a single TIRS band. This routine reads the L1R data for the current band, loops through the SCAs applying the appropriate MTFC kernel for each, and writes the updated L1R data back out to the L1R image file.
open_input_band
Modified IAS routine (from resample) to read the input L1R file for the specified (TIRS) band.

filter_image
Apply the MTFC filter for the current band/SCA to the L1R image data for that band/SCA. This routine allocates space for the filtered output SCA image, retrieves the kernel for the current band/SCA from the internal kernel data structure, retrieves the detector offset table for the current band/SCA from the LOS model structure, and then loops through the L1R image indices. Each image location is processed sequentially with the MTFC filter kernel applied to the surrounding image neighborhood. The convolution calculations that compute the image index associated with each filter tap use a pair of special image index to line/sample and line/sample to image index functions (see below) that take the detector offset table into account. The along-track shifts due to deselected detectors are thus accounted for by index adjustment rather than input data reorganization. If the convolution at any image point requires the kernel to reach outside the valid image area, that image point is left unfiltered. The filtered image takes the place of the original image in the input image data structure.
image_line_sample
Convert a linear image index into a line/sample coordinate pair using the image dimensions and the detector offset table. Indices that are out of range return an error.

image_index
Convert a line/sample coordinate pair into a linear image index using the image dimensions and the detector offset table. Line/sample locations that are out of range return an invalid index (-1).

write_band
Writes the updated L1R data back out to the L1R file for the specified (TIRS) band.

Procedure

The TIRS MTF compensation algorithm applies an externally generated MTF compensation filter kernel to the input L1R TIRS data, updating the L1R data in place. This avoids the need to create a separate (large) new L1R output file in which only the TIRS bands have been changed. The filter kernels vary by band and SCA and are derived using models of the TIRS system transfer function. The details of the filter formulation are beyond the scope of this ADD so, for present purposes, the filter weights are simply an input loaded from the Calibration Parameter File. One important constraint on these filters is that they must be zero phase (i.e., symmetric) to avoid introducing geometric shifts into the L1R image data. In addition to the input/output L1R data and CPF filter weights, the algorithm uses the TIRS LOS model to account for the along-track shifts present in the L1R imagery due to the use of deselected detectors (i.e., detectors from the secondary science row). The LOS model contains a table of the TIRS detector offsets by band and SCA.

The algorithm is quite simple, being essentially the convolution of a rectangular filter kernel with a rectangular image array. Only the handling of the detector deselect L1R image geometry provides a minor wrinkle. The algorithm procedure is as follows:
1. Load the LOS model structure from the input model file.

2. Load the CPF structure from the input file.

3. Load the MTF compensation kernels from the CPF (one per band/SCA).

4. Open the TIRS L1R file for read and write access.

5. For each TIRS band:

a. Read the L1R image data (all SCAs).

b. For each SCA:

i. Get the filter kernel for the current band/SCA from the set loaded from the CPF.

ii. Construct the detector offset table for this band/SCA using the information in the LOS model.

Note: The most important contributor is the detector delay table for the current band/SCA, but the model also contains, and the algorithm uses, the L0R fill table copied from the L0R input file, and the nominal L0R fill offset. In practice the latter two values are always zero but they are included in the calculations for consistency with other algorithms (e.g., the resampler). Note that should a L1R data set containing fill be encountered, the fill would corrupt the MTFC process near the top and bottom of the image. A warning message to this effect is included to protect against this eventuality. Logic to explicitly locate and avoid fill could be added, but would add unnecessary complexity to the indexing routines.
For detector k:

 offset[k] = round(detector_delay[k] – l0r_fill[k] + nominal_fill)

iii. Loop through the input image by image index. The Convolve One Image Point Sub-Algorithm described below, applies the MTFC filter at this image location. The filtered image values are stored in a separate buffer until the entire SCA has been filtered.

iv. Overwrite the input image for this SCA with the filtered image.

c. Write the filtered image band back into the original L1R image file.

6. Close the updated L1R file.

Convolve One Image Point Sub-Algorithm
The current image point is specified by its linear index, that is, the sequential location within the image buffer.
1. The index value is converted to an equivalent line/sample coordinate pair in ideal image space, accounting for deselected detector offsets and the image dimensions (nsamp, nline) using the image_line_sample unit:
a. Compute the sample coordinate:

sample = index % nsamp, where % indicates a remainder operation.

b. Compute the line coordinate:

line = (index – sample) / nsamp + offset[sample].
2. Initialize the filtered image value by setting it to zero:
filt_img[index] = 0

3. Set the filter offsets to one half the filter dimensions, discarding the fraction:

s_off = filter_ns / 2

l_off – filter_nl / 2

4. Loop on the filter dimensions:

a. Compute the ideal image line/sample coordinate corresponding to the current filter line (index il) and sample (index is):

i. img_line = line – l_off + il

ii. img_samp = sample – s_off + is

b. Convert the ideal image line/sample to an image buffer index, checking for locations that fall outside the image area, using the image_index unit:

i. Initialize the index to -1 (invalid number).

ii. Check the sample value against the image bounds:

If img_samp < 0 or img_samp > nsamp-1 then return index.

iii. Adjust the sample value for detector offset:
adj_line = img_line – offset[img_samp]

iv. Check the line value against the image bounds:

If adj_line < 0 or adj_line > nline-1 then return index
v. Calculate the image buffer index:

index = adj_line * nsamp + img_samp

c. If the returned index is invalid (i.e., < 0 or > nsamp*nline-1), set the filtered image value to the original image value for this line/sample location, and break out of the filter loops to proceed to the next image point.

filt_img[index] = orig_img[index]

d. If the returned index is valid, multiply the original image value at this index by the current filter weight, and add the result to the current filtered image value:

filt_img[index] += orig_img[index] * filter[il*filter_ns+is]

e. Continue until all filter weights have been applied or an input image location outside the image bounds causes the filter loop to be broken.

5. Return the final filtered image value.

Figure 1 below shows how the detector offset adjustment to the line coordinate, described in step 4b above, controls the application of the filter kernel to the input image. The kernel labeled a) in the figure is in an area unaffected by deselected detectors, so the kernel is convolved with the image without adjustment. At location b) the kernel must reach outside its nominal footprint to adjust the convolution for the deselected detector.

[image: image1.png]

Figure 1: L1R Image Example Showing Deselected Detector Offset. a) Nominal filter convolution pattern. b) Convolution pattern accounting for deselect.

Output Files

As noted above, the output of this algorithm is an updated version of the input L1R image file. The updates alter the values in some, but not all, of the image pixels in the TIRS thermal band image layers. Pixels that fall too close to the edge of one of the thermal band SCA images such that the MTFC sharpening kernel would have required data from outside the image to be fully applied, are left unaltered. The extent of the unaltered data varies with the MTFC filter dimensions and with the distribution and offset geometry of deselected detectors in each band/SCA. The updated data are written back into the original L1R HDF5 image file rather than creating a new copy. This facilitates integration of this processing step into the existing image resampling flow, and avoids the input/output and file storage burden of creating another large image file that is nearly identical (in the OLI reflective bands) to the original file.
Verification Methods

The prototype TIRS MTF compensation application is tested by executing the test script called test_tirs_mtfc.csh provided in the tirs_mtfc/tests directory:
./test_tirs_mtfc.csh
This script constructs the required input ODL and OMF files from templates, also provided in the tirs_mtfc/tests directory, and then invokes the tirs_mtfc executable with the ODL input file, accessing the test data located on l8srlald01 under: /data2/cvtk_test_data/geometry/tirs_mtfc/ver4.0.

The files provided in this directory include:

l1r_image.h5.save – The original L1R image file. The test script copies this file to l1r_image.h5 prior to invoking tirs_mtfc.
l1r_image.h5.verify – The reference output of the tirs_mtfc application. The test script compares the MTFC filtered (in place) l1r_image.h5 file against this file.

LC08CPF_20151001_20151231_01.01 – Calibration parameter file containing the TIRS MTFC filter parameters.

precision_model.h5 – Precision geometric model file corresponding to the L1R imagery, containing the detector offset information.

Running the test script will create the following additional files:

nominal.odl – Input ODL file constructed from the template_nominal.odl file found in tirs_mtfc/tests/odl/.

tests.omf – Input OMF file constructed from the template_tests.omf file found in tirs_mtfc/tests/.

test_tirs_mtfc.log – Logged output from the test script.

To run the TIRS MTF compensation process:

1) Check out code from subversion. Note that this is a complete version of the IAS_3_7_0_OPS code tree with the new functionality added.
svn checkout https://edclxs131:18080/svn/l8/tags/calval/phase4/tirs_mtfc_4.0
2) Setup the ias build environment using the iaslib_setup and iasbase_setup scripts.

3) Build the updated IAS libraries in the ias_lib directory by executing:

./autogen.sh

./configure

./build

4) Build the ias_base applications, including the new tirs_mtfc application, in the ias_base directory by executing:
./autogen.sh

./configure

make

5) Run TIRS MTFC compensation test script in the tirs_mtfc/tests directory as described above. This will update the input l1r_image.h5 file in-place and compare it to the l1r_image.h5.verify reference image using the h5diff application.

The contents of the ODL input file to tirs_mtfc are as follows:

OBJECT = TIRS_MTFC
 WO_DIRECTORY = Output working directory (“/data2/cvtk_test_data/geometry/tirs_mtfc/ver4.0” for the test case).
 WORK_ORDER_ID = Work order ID (“tests” for the test case)
 BAND_LIST = Bands to process (“(1,2,3,4,5,6,7,8,9,10,11)” for the test case)
 PROCESSING_PASS = Number of processing pass to use in OMF access (3 for Collection1)
END_OBJECT = TIRS_MTFC
END

The updated l1r_image.h5 file generated by the prototype code should match the l1r_image.h5.verify reference image. As noted above, the test script checks this using h5diff.

Maturity

Much of the tirs_mtfc code, particularly ODL, OMF, CPF, and model input and image I/O, was derived from similar units from existing IAS libraries and applications, particularly the resampler. The core of the filter application algorithm is the filter_image.c unit, which is new.
Notes

Some additional background assumptions and notes include:
1. The initial intent of this algorithm is for use in geometric calibration process flows where the MTFC enhancement improves correlation accuracy between the TIRS and OLI spectral bands. Implementing this processing step in routine product generation would require further study of its impact on science, and the approval of the Landsat Science Team.
2. In light of item #1 above, locating the MTFC filter coefficients in the CPF, as was done in the prototype implementation, may not be the best solution. It was done this way for several reasons:

a. It facilitates adoption of this capability as part of standard Level 1 processing. This could be particularly important if TIRS-2 should exhibit spatial performance that is worse (or more objectionable due to the lack of stray light) than TIRS-1.

b. It avoided creating another input “system table” file that would have to be kept track of and managed.

c. The MTFC parameters are CPF-like in the sense that they are sensor and mission specific.

d. The parameters could change as knowledge of TIRS spatial performance improves (e.g., as a result of the ongoing QWIP detector characterization efforts) and the CPF management process accommodates parameter updates.
e. It seemed like the easiest way to do it given the extensive existing CPF/ODL input infrastructure.

3. A disadvantage of using the CPF as the vehicle for the TIRS MTFC parameters is that it required modifications to IAS library routines. This is the main reason that the prototype code was delivered as part of the full IAS code tree.

4. The use of an automated test script for algorithm verification is an experiment to see if this approach simplifies algorithm delivery and verification.

5. This algorithm will not work on lunar data since L1R detector-to-detector alignment does not reflect the usual detector offsets in those data sets due to the reduced object space scan rate.

Review History
--
ADD_TIRS_MTF_Compensation_V4.0a.doc
--

[TJB01]
We usually don’t modify the inputs to an application in case the application fails and needs to be restarted (or rolled back a few steps). So, we may need to consider other options for IAS/LPGS. Reducing the IO is definitely desired though. One option is to add the algorithm to the tail end of the RPS processing step (assuming the precision and systematic model are interchangeable). But nothing to worry about in the ADD.

In hindsight, using the systematic model would have been better since either model would work equally well. Making this part of RPS processing should work fine.
[TJB02]
Seems like “so” should be the start of a new sentence.

Agree, changed.
[TJB03]
So far, reading through the algorithm here, the precision and systematic models would produce the same results, correct? If so, may want to clarify that since it gives us a little more freedom on how it is worked into the processing flows.
As noted above, either model would work equally well. Using the systematic model would make it easier to integrate into the processing flow. One word of caution, however, this algorithm will not work on lunar data (I’ve added note #5 to document that).
[TJB04]
Should probably remove this part. Otherwise it is “SBU” info with a fully qualified host name.
OK, good to know, thanks.
[TJB05]
Are il and is here the loop indices?
Yes, rewrote to clarify.
[TJB06]
Another place the .cr.usgs.gov needs to be removed for SBU info concerns.
OK, thanks.

[TJB07]
Typo: should be “is”
Fixed.

11

