
Introduction to Python
Python basics and installation

Python content and code examples credits
The slides with python content and code snippets are taken from

● https://learnpython.org
● https://www.tutorialspoint.com/python/index.htm

https://learnpython.org
https://www.tutorialspoint.com/python/index.htm

Overview
Python is a high-level, interpreted, interactive and object-oriented scripting language. Python is designed to be highly readable. It uses
English keywords frequently whereas other languages use punctuation, and it has fewer syntactical constructions than other
languages.

● Python is Interpreted − Python is processed at runtime by the interpreter. You do not need to compile your program before
executing it. This is similar to PERL and PHP.

● Python is Interactive − You can actually sit at a Python prompt and interact with the interpreter directly to write your programs.
● Python is Object-Oriented − Python supports Object-Oriented style or technique of programming that encapsulates code

within objects.

It provides very high-level dynamic data types and supports dynamic type checking.

Indentation
Python uses indentation for blocks, instead of curly braces. Both tabs and spaces are supported, but the standard indentation requires
standard Python code to use four spaces. For example:

Variables and Types
Python is completely object oriented, and not "statically typed". You do not need to declare variables before using them, or declare their
type. Every variable in Python is an object. The types of variables are

Numbers

Python supports two types of numbers - integers and floating point numbers. (It also supports complex numbers, which will not be
explained in this tutorial).

Variables and Types
Strings

Strings are defined either with a single quote or a double quotes. The difference between the two is that using double quotes makes it
easy to include apostrophes (whereas these would terminate the string if using single quotes)

Assignments can be done on more than one variable "simultaneously" on the same line like this

Lists
Lists are very similar to arrays. They can contain any type of variable, and they can contain as many variables as you wish. Lists can
also be iterated over in a very simple manner. Here is an example of how to build a list.

Creating a list is as simple as putting different comma-separated values between square brackets. For example −

To access values in lists, use the square brackets for slicing along with the index or indices to obtain value available at that index. For
example −

list1 = ['physics', 'chemistry', 1997, 2000];
list2 = [1, 2, 3, 4, 5, 6, 7];

list1[0]: physics
list2[1:5]: [2, 3, 4, 5]

You can update and delete list elements, list = ['physics', 'chemistry', 1997, 2000];
Update the list element 1, list[1] = 2020
Delete the list element 2, del list[2]

Refer to https://www.tutorialspoint.com/python/python_lists.htm to learn more about lists

https://www.tutorialspoint.com/python/python_lists.htm

Tuples
A tuple is a sequence of immutable Python objects. Tuples are sequences, just like lists. The differences between tuples and lists are,
the tuples cannot be changed unlike lists and tuples use parentheses, whereas lists use square brackets.

Creating a tuple is as simple as putting different comma-separated values. Optionally you can put these comma-separated values
between parentheses also. For example −

Accessing values in tuples is similar to accessing values in lists, tup1[0]: physics and tup2[1:5]: [2, 3, 4, 5]

Tuples are immutable which means you cannot update or change the values of tuple elements. You are able to take portions of existing
tuples to create new tuples

Dictionary
Each key is separated from its value by a colon (:), the items are separated by commas, and the whole thing is enclosed in curly
braces. An empty dictionary without any items is written with just two curly braces, like this: {}.

Keys are unique within a dictionary while values may not be. The values of a dictionary can be of any type, but the keys must be of an
immutable data type such as strings, numbers, or tuples.

To access dictionary elements, you can use the familiar square brackets along with the key to obtain its value. Following is a simple
example −

You can update a dictionary by adding a new entry or a key-value pair, modifying an existing entry, or deleting an existing entry as
shown below in the simple example dict['Age'] = 8; # update existing entry

Functions
A function is a block of organized, reusable code that is used to perform a single, related action. Functions provide better modularity
for your application and a high degree of code reusing.

As you already know, Python gives you many built-in functions like print(), etc. but you can also create your own functions. These
functions are called user-defined functions.

Functions in python are defined using the block keyword "def", followed with the function's name as the block's name. They may also
receive arguments from a caller and return a value to caller.

Basic Operators
Python language supports the following types of operators.

● Arithmetic Operators
● Comparison (Relational) Operators
● Assignment Operators
● Logical Operators
● Bitwise Operators
● Membership Operators
● Identity Operators

Refer to https://www.tutorialspoint.com/python/python_basic_operators.htm

https://www.tutorialspoint.com/python/python_basic_operators.htm

Decision Making

Loops
There are two types of loops in Python, for and while.

For loops iterate over a given sequence. Here is an example:

For loops can iterate over a sequence of numbers using the "range" function

While loops repeat as long as a certain boolean condition is met. For example:

break and continue statements
break is used to exit a for loop or a while loop, whereas continue is used to skip the current block, and return to the "for" or "while"
statement. A few examples:

Classes and Objects
Objects are an encapsulation of variables and functions into a single entity. Objects get their variables and functions from classes.
Classes are essentially a template to create your objects.
A very basic class would look something like this:

List Comprehensions
List Comprehensions is a very powerful tool, which creates a new list based on another list, in a single, readable line.
For example, let's say we need to create a list of integers which specify the length of each word in a certain sentence, but only if the
word is not the word "the".

Using a list comprehension, we could simplify this process to this notation:

Modules and Packages
In programming, a module is a piece of software that has a specific functionality. For example, when building a ping pong game, one
module would be responsible for the game logic, and another module would be responsible for drawing the game on the screen. Each
module is a different file, which can be edited separately.

The Python code for a module named aname normally resides in a file named aname.py. Here's an example of a simple module,
support.py

The import Statement: You can use any Python source file as a module by executing an import statement in some other Python
source file. The import has the following syntax - import module1[, module2[,... moduleN].

Modules and Packages
When the interpreter encounters an import statement, it imports the module if the module is present in the search path. A search path is
a list of directories that the interpreter searches before importing a module. For example, to import the module support.py, you need to
put the following command at the top of the script

The from...import Statement: Python's from statement lets you import specific attributes from a module into the current namespace.
The from...import has the following syntax − from modname import name1[, name2[, ... nameN]]

For example, to import the function fibonacci from the module fib, use the following statement − from fib import fibonacci

Exception Handling
When programming, errors happen. It's just a fact of life. Perhaps the user gave bad input. Maybe a network resource was unavailable.
Maybe the program ran out of memory. Or the programmer may have even made a mistake! Python's solution to errors are exceptions.

But sometimes you don't want exceptions to completely stop the program. You might want to do something special when an exception
is raised. This is done in a try/except block.Here's a trivial example: Suppose you're iterating over a list. You need to iterate over 20
numbers, but the list is made from user input, and might not have 20 numbers in it. After you reach the end of the list, you just want the
rest of the numbers to be interpreted as a 0. Here's how you could do that:

There, that wasn't too hard! You can do that with any exception. For more details on handling exceptions, look no further than the
Python Docs

https://docs.python.org/tutorial/errors.html#handling-exceptions

Install Miniconda and Spyder
Miniconda can be installed for Python 2 (32 bit or 64 bit) or Python 3 (32 bit or 64 bit) depending on which ArcGIS environment it will be
integrated with

Download miniconda from https://docs.conda.io/en/latest/miniconda.html

Install Miniconda and open the miniconda prompt

To create a user local env: conda create –n <env-name> python=2.7.10
OR
To create a multi-user local env: conda create –n <env-path> python=2.7.10

Example: conda create -n arc1041 python=2.7.10 numpy=1.9.2 matplotlib=1.4.3 scipy=0.16.0 pandas pyparsing xlrd xlwt console_shortcut
spyder

https://docs.conda.io/en/latest/miniconda.html

Install Pycharm
Download and install pycharm https://www.jetbrains.com/pycharm/

https://www.jetbrains.com/pycharm/

References
https://www.learnpython.org/

https://www.tutorialspoint.com/python/index.htm

https://www.learnpython.org/
https://www.tutorialspoint.com/python/index.htm

