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August 08, 2024

Dear Dr. Peng,

We have revised the manuscript, “Assessing gap-filled Landsat land surface temperature 
time series data using different observational datasets” (original title is “Assessing the 
accuracy of gap-filled land surface temperature time series for surface urban heat island 
study”) in accordance with your guidance on April 02, 2024. We reorganized our 
manuscript by following the IJRS’s instruction for authors.   We responded to comments 
from two reviewers, providing point by point responses, and made the significant changes 
in text (see below). Since the topic of this manuscript is a high-profile topic within the U.S 
Department of Interior, we will need to know whether the manuscript will be accepted by 
your journal. Please ensure we are notified as soon as possible of your decision. If you have 
any questions about our revised submission, please contact us.

Thanks,

Hua Shi PhD, 

Research Ecologist/Geographer

AFDS, Contractor to the USGS EROS Center

47914 252nd Street | Sioux Falls, SD, USA 57198-0001

605.594.6050 | hshi@contractor.usgs.gov

ORCID iD:  https://orcid.org/0000-0001-7013-1565

Page 1 of 53

http://mc.manuscriptcentral.com/tres   Email: IJRS-Administrator@Dundee.ac.uk

International Journal of Remote Sensing and Remote Sensing Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

The response to referee (s). “R:” is our responses. 

Referee(s)' Comments to Author:

Referee: 1

Comments to the Author

In this manuscript, titled ‘Assessing the accuracy of gap-filled land surface temperature time series for 
surface urban heat island study’, the authors presented the validation of a gap-filling method for 
Landsat LST data. The validation is based on several datasets, considering the NOAA Global Historical 
Climate Network (GHCN) air temperatures as the main reference. Although the evaluation of a well 
stablished method is always of interest to the community, since it reinforces the quality of the method 
and, thus, justify its use and its quality, the methods used in this research paper are not the most 
appropriate for the assessment of an LST dataset. Although some previous papers with validated LST 
products temperature data, that is not a good practice since the reference dataset is based on a 
completely air different magnitude which only shows similar values to those of LST under specific 
atmospheric conditions and times (see Best Practice protocol for LST validation; Guillevic et al. 2018: 
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Flpvs.gsfc.nasa.gov%2FPDF%2FCE
OS_LST_PROTOCOL_Feb2018_v1.1.0_light.pdf&data=05%7C02%7Chshi%40contractor.usgs.gov%7C1ea
bf08df27d4ebbd42408dc530289ce%7C0693b5ba4b184d7b9341f32f400a5494%7C0%7C0%7C63847651
7568471560%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haW
wiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=w31x5kZhlmWL8IH0EfnsYztjFV4kHAir7GMAIZEpNyQ%3D
&reserved=0).

R: Thanks. However, we disagree with Referee 1’s comments regarding the use of validated 
LST products temperature data. Referee 1 stated, “Although some previous papers have 
validated LST products with temperature data, that is not a good practice since the reference 
dataset is based on a completely different magnitude of air temperature, which only shows 
similar values to those of LST under specific atmospheric conditions and times.” We believe 
Referee 1 may have misunderstood why we use GHCN station observation air temperature 
and how we evaluated the gap-filled LST. Here is our explanation:

1. There are no field observation LST data available for evaluating gap-filled LST in our 
research, so using GHCN station data is a good option.

2. There is always debate about using air temperature to validate LST. While it may not 
be the most appropriate to use air temperature to assess Landsat-derived LST directly, 
but there is a strong relationship and spatial pattern between air temperature and LST 
at the same location and date. 

3. We do NOT use GHCN station data to assess Landsat derived LST directly. we used 
GHCN air temperature as a baseline to compare its relationship with original clear 
Landsat LST and gap-filled LST to evaluate the gap-filled LST products whether could 
be used for SUHI research. For instance, the results of the statistical analysis show that 
the original LST and gap-filled LST are comparable or even better. This indicates that 
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gap-filled LST products can be used to further SHUI research. Our manuscript stated 
this conclusion.

4. For comparison, gap-filled LST was evaluated against existing remote sensing-derived 
LST from MODIS, VIIRS, and ECOSTRESS, which have different spatial resolutions. We 
used GHCN station data as a reference, averaging at 9 Landsat pixels (30 meters) to 
match the spatial resolution, to assess the performance of the gap-filling models.

On the other hand, the manuscript is confusing since its title. It is mentioned in the title and several 
times during the manuscript, especially at the end of each section, that the assessed method is for 
SUHI studies. Although the authors are right that these data could be used for SUHI analysis, it is not 
as relevant as to be mentioned constantly, and in any case make sense to include it in the title and 
the abstract. I would suggest to remove that references to SUHI or, at least, include a small study 
case of the implementation of the data to SUHI, what in my opinion is out of the scope of this 
manuscript.

R:  Thanks. We changed title to “Assessing gap-filled Landsat land surface temperature 
time series data using different observational datasets”. We made some change in text. Our 
gap-filled LST products will be used for further SUHI research. 

The hypothesis considered in the introduction should be deeply thought, they sound quite superfluous, 
e.g., what is ‘expert opinion’?, or in reference to hypothesis 3, the accuracy of LST is often assessed 
comparing with ground temperatures. Hypothesis 4 is also not clearly answered in the manuscript. The 
objectives are also unclear or not fully related with the overall manuscript.

R: Thanks. We deleted hypothesis 3 and made some changes. 

The method section should be more detailed. The gap-filling method is not clearly explained. A 
suggestion would be to add a flowchart which helps to understand the processing flow. In page 13 I 
cannot understand how temperature and SUHI intensity can be estimated from digital camera 
photographs. Please, add more details.

R: This manuscript focuses on the accuracy assessment and uncertainty analysis of gap-
filled LST products generated by gap-filling models. We have previously published a paper 
that provides a detailed discussion of gap-filling methods, which is referenced in Section 
2.3. Therefore, we believe it is unnecessary to explain the gap-filling methods again in this 
manuscript.

Published paper:

Zhou, Q., Xian, G., & Shi, H. (2020). Gap fill of land surface temperature and reflectance products in 
Landsat analysis ready data. Remote Sensing, 12
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Other minor comments:

Several times is mentioned that MODIS / VIIRS weekly composites have better quality than daily data. I 
can see your point, but that really depends on your purpose and the use of your data. E.g., on a strict 
validation of daily and weekly LST data, the former would provide better results. Thus, I would suggest 
to change that expression and clarify that it is preferred to use weekly composites to avoid or minimize 
the influence of potential cloud effects in the image.

R: Thanks. We made some improvement in text.

I am also wondering which is the effect of under-cloud gap-filling. In Figure 3, the gap-filling LSTs are 
always above the other sources LSTs. Why they are not lower if the gap is due to a cloud effect. I would 
expect to have cooler surface temperatures for those situations.

R: Good point. As mentioned above, we have a detailed discussion about gap-filling models 
and their products. This seasonal training strategy uses clear observations as training data 
and employs linear regression models to predict missing (or cloud/snow-covered) LST 
pixels. However, we stated the limitations of our gap-filling models. We plan to improve 
these models with better training strategies in future work.

In Page 20, line 70: What do you mean with the spectral behavior of LST? LST is not a spectral 
magnitude.

R: thanks. There is no line 70 in page 20. 

Please, review criteria when referring to figures: Figure 1. or Fig. 1.

R: thanks. Fixed.

Add units in tables where required, most of them are missing.

R: thanks. Fixed. Note: R2 and RMSE don’t have units.

The labels in figures are not readable on paper and hardly readable on digital format.

R: thanks. We reproduced figures with readable labels. 

State if you are using MOD11 or MOD21 LST data. If it is the former, then the reference Hulley and Hook 
(2021) is not the most appropriate for page 10 line 22. I would rather suggest the original paper for the 
improvements in MOD11 C6 for bare soil.

R: We added new reference:

Duan, S.-B., Li, Z.-L., Cheng, J., & Leng, P. (2017). Cross-satellite comparison of operational 
land surface temperature products derived from MODIS and ASTER data over bare soil 
surfaces. ISPRS Journal of Photogrammetry and Remote Sensing, 126, 1-10
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Referee: 2

Comments to the Author

It is an interesting topic and fall within the scope of IJRS.

But this paper is hard to follow, and needs to be improved to meet the standard of IJRS. My comments 
are listed below,

Major comments

1. Although the introduction is very detailed, its excessive length may hinder readability. It would be 
beneficial to streamline this section to ensure a more concise and reader-friendly presentation.

R: Thanks. We improved the introduction. This version retains the key points and 
objectives of the study while making the introduction more concise and reader friendly.

2. There is significant content repetition between lines 55 of page 5 to line 20 of page 6, and lines 37 to 
52 of page 5.

R: Thanks. Reorganized and removed repetition sentences.

3. It's important to note that air temperature and LST represent two distinct parameters, and it is not 
accurate to use near-surface air temperature as a proxy for LST due to inherent differences between 
these two measurements. The statement "Another motivation for implementing the extracting strategy 
is that GHCN is field observation and air temperature but more accurate than other existing remote 
sensing derived LST." in section 2.2 suggests a direct comparison of accuracy between GHCN air 
temperature data and remote sensing-derived LST data. However, considering the fundamental 
distinction in what they measure, this comparison seems inappropriate.

R: Here are the explanation: Why we use GHCN station observation air temperature and 
how we evaluated the gap-filled LST. Here is our explanation:

1. There are no field observation LST data available for evaluating gap-filled 
LST in our research, so using GHCN station data is a good option.

2. There is always debate about using air temperature to validate LST. While it 
may not be the most appropriate to use air temperature to assess Landsat-
derived LST directly, but there is a strong relationship and spatial pattern 
between air temperature and LST at the same location and date. 

3. We do NOT use GHCN station data to assess Landsat derived LST directly. 
we used GHCN air temperature as a baseline to compare its relationship 
with original clear Landsat LST and gap-filled LST to evaluate the gap-filled 
LST products whether could be used for SUHI research. For instance, the 
results of the statistical analysis show that the original LST and gap-filled 
LST are comparable or even better. This indicates that gap-filled LST 
products can be used to further SHUI research. Our manuscript stated this 
conclusion.

4. For comparison, gap-filled LST was evaluated against existing remote 
sensing-derived LST from MODIS, VIIRS, and ECOSTRESS, which have 
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different spatial resolutions. We used GHCN station data as a reference, 
averaging at 9 Landsat pixels (30 meters) to match the spatial resolution, to 
assess the performance of the gap-filling models.

As acknowledged in section 4 regarding the limitations of this study, "Additionally, NOAA GHCN records 
air temperatures that are different from gap-filled and other LST datasets." Given that both Landsat LST 
and LST datasets used in the comparison analysis have their accuracy quantified based on GHCN air 
temperature, the rationale for using GHCN data as a cornerstone reference for remote sensing-derived 
LST requires further clarification to justify its appropriateness.

R: Thanks. Good points. We added sentences to justify its appropriateness. 

4. The length of section 4 is extensive, with some content repetition observed. It is advisable to 
streamline this section for conciseness. Consider separating the discussion and conclusion into distinct 
sections. Additionally, incorporating "3.3 Uncertainty analysis" as part of the experimental content 
within the discussion section could make the narrative more cohesive and logically structured.

R: Thanks for your suggestions. We separated discussion and conclusion into distinct 
sections. 

Minor comments

1. It is recommended to add latitude and longitude grids to Figures 1 and 2, and to supplement the color 
bar legends of Figures 1 and 2 with the unit "°C" for clarity.

R: Thanks. We reproduced Figure 1 by using Land cover classes and GHCN station 
locations with legend, the detailed information about each GHCN station see the Appendix 
1. We also added latitude and longitude grids for Figure 1 and 2. 

2. Please supplement the selected ground station points with their latitude and longitude information to 
enhance the geographical context.

R: We reproduced Figure 1 with Land cover types and NOAA GHCN station’s location 
with ID. Added appendix 1 for these NOAA GHCN stations detailed information including 
Latitude and longitude.

3. Figures 3.1, 3.2, and 3.3 reveal some exceptionally low outliers in the original Landsat LST data. It is 
recommended that the authors clarify whether these outliers have a non-negligible impact on the Gap-
Filled LST results.

R: Thank you. Figures 3.1, 3.2, and 3.3 (currently Figure 5, 6, and 7) reveal exceptionally 
low outliers in the original Landsat LST data. These data points predominantly occur 
during winter, as evidenced by snow/ice cover and their limited occurrence. Their impact 
on the Gap-Filled LST results is non-negligible due to our use of a seasonal training 
strategy.
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Assessing gap-filled Landsat land surface temperature time series data 

using different observational datasets

Landsat Analysis Ready Data (ARD)-based time series present challenges in 

monitoring surface urban heat islands (SUHI) due to rapid changes in land 

surface temperature (LST) compared to cloud-free satellite observations. This 

research is to investigate the use of a spatiotemporal gap-filling model as a 

feasible and cost-effective solution to produce Landsat time-series LST products 

with both high spatial resolution and temporal frequency. The study identified 

and filled Landsat ARD thermal times-series data gaps due to missing data, cloud 

and shadow effects, and data quality. The accuracy of Landsat gap-filled products 

was assessed using randomly selected clear observations of Landsat and 

uncertainty products from the gap-filling model, and was evaluated using various 

existing temperature datasets, including climate data from NOAA Global 

Historical Climate Network (GHCN) station observations, Daily Surface Weather 

and Climatological Summaries (DAYMET), and land surface temperature 

including MODIS, VIIRS, and ECOSTRESS. The result suggests that the gap-

filled Landsat LST has significant correlations with existing datasets including 

field observation and remote sensing data derived from other sensors that have 

similar monthly and seasonal variation patterns. The uncertainty maps show 

spatial distributions of uncertainty for gap-filled pixels that have high or low 

uncertainties. The Landsat gap-filled time-series datasets can be used to measure 

annual, seasonal, or even monthly landscape thermal conditions, which are useful 

for SUHI and relevant research, and to perform multi-decade time series LST 

change analysis under climate change conditions.

Keywords: temporal frequency; gap-filling; Landsat surface temperature; 

uncertainty analysis, accuracy assessment
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1. Introduction

Satellite images provide valuable geospatial data for characterizing thermal conditions 

and support ecosystem and environmental change monitoring, but standard satellite 

missions always have to live with the trade-offs between spatial resolution and temporal 

frequency (Luo, Guan, and Peng 2018; Roy and Yan 2020). Remote sensing techniques 

are increasingly used to combine data from multiple sensors and platforms to create 

high-quality data products (Bauer 2020). However, these data products may contain 

gaps due to missing or incomplete data (cloud cover or sensor malfunctions) that can 

reduce their accuracy and usefulness for scientific research and applications (Wulder et 

al. 2011). To overcome these limitations, gap-filling (or data fusion) models are widely 

used in environmental change monitoring, where continuous and accurate observations 

of environmental variables are crucial (Gao et al. 2006; Roy et al. 2008; Roy and Yan 

2020; Zhou, Xian, and Shi 2020).

The growth of multi-sensor integrated datasets provides the opportunity to investigate 

land surface temperature (LST) dynamics and environmental changes at both high 

spatial resolution and temporal frequency, but also urges approaches to reduce the 

inconsistency of data availability. Many gap-filling approaches were developed for 

predicting missing values related to cloud contamination and Landsat 7 Scan Line 

Corrector (SLC)-off data (Chen et al. 2011; Yan and Roy 2018; Zhu et al. 2022). The 

main purpose of these models is to fill the gaps in time-series data caused by missing 

values, sensor failure, or other factors including clouds and cloud shadows, and to 

estimate the missing values with reasonable accuracy. The accuracy of gap-filling 

models is essential for environmental change monitoring, as inaccurate or biased 

estimates (Roy and Yan 2020) may lead to incorrect conclusions and decisions 

(Stehman et al. 2018; Stehman and Foody 2019; Wulder et al. 2022). To achieve 
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accurate gap-filling, several methods have been proposed, including interpolation, 

regression, and machine learning algorithms (Zhu et al. 2010; Zhu et al. 2016; Zhou et 

al. 2022). Despite the progress made in this field, gap-filling models still face 

challenges, such as uncertainty analysis and accuracy assessment, which need to be 

addressed to improve their performance for gap-filled products (Wang et al. 2022; Zhu 

et al. 2022).

The accuracy of these gap-filling algorithms is crucial for ensuring the reliability and 

usefulness of the resulting data products (Niclòs et al. 2011; Foody 2020). Accuracy 

assessment is the process of evaluating the agreement between the estimated values 

from gap-filling techniques and the true values. Uncertainty analysis is the process of 

quantifying the variability in the estimated values due to uncertainties in the gap-filling 

process (Rocchini et al. 2013). The accuracy assessment and uncertainty analysis of 

gap-filled products are necessary to understand the limitations of the data and to ensure 

that the data is suitable for use in environmental research and management (Rounsevell 

et al. 2021; Zhu et al. 2022).

Uncertainty analysis of gap-filled LST products can also provide insights into the 

reliability of observed data and model outputs in urban environmental change 

monitoring, which is crucial for decision making and policy development (Rocchini et 

al. 2013). Accuracy assessment ensures that environmental change monitoring data is 

reliable and can be used for decision making purposes (Leyk et al. 2018).

One of important environmental change monitoring is SUHI research. In urban heat 

island research, gap-filling models can be used to complete missing data points in 

temperature data, which is important for understanding the effects of urbanization on 

temperature patterns in temporally (Zhou, Xian, and Shi 2020). Uncertainty analysis can 
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also help to quantify the uncertainty associated with temperature data and model 

outputs, which is important for understanding the reliability of temperature data and for 

making informed decisions about the impacts of urban heat islands on human health and 

the environment (Rocchini et al. 2013). Accuracy assessment of gap-filled data is useful 

for SUHI intensity and heat wave related analysis so that reliable SUHI information can 

be used to develop effective public health strategies to mitigate the impacts of climate 

change on human health. The main research problem associated with these models is 

the input data and models' uncertainty, which can significantly affect the accuracy of 

gap-filled data. 

In this study, we answered questions including what are the current methods used to fill 

gaps in surface temperature data, what is the uncertainty of input data and models, what 

is the accuracy of gap-filled products, and what are the limitations of our gap-filling 

models and how can they be improved. We hypothesize that 1) the use of gap-filling 

algorithms is a more effective method for filling gaps in Landsat thermal conditions 

than traditional interpolation methods; 2) the uncertainty in surface temperature data can 

be quantified using statistical models by incorporating prior knowledge; and 3) the use 

of gap-filling models and uncertainty analysis can improve the accuracy of urban heat 

island studies models inputs by reducing the bias and variance in surface temperature 

datasets.

With the hypotheses, our objectives were 1) to identify and analyse uncertainty of input 

datasets and gap-filling models for surface temperature time series data; 2) to 

investigate the impact of gap-filling on the surface temperature time series data; 3) to 

compare the performance of the gap-filled surface temperature time series data with 

field observation and other existing LST data for the validation of the accuracy and 

reliability of the gap-filling technique(s); 4) to provide recommendations for the 
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selection and application of gap-filling techniques for improved urban heat island study. 

2. Materials and methods

We carried out this research through several steps. We first collected reference datasets 

from various existing sources with multiple spatial resolutions and temporal frequencies 

(Section 2.3). For each date of the time series within selected years, reference 

temperature for each date was taken the same date (or a close date if data were missing) 

as the gap-filled Landsat LST date (Section 2.4). These reference datasets provided the 

basis for the accuracy estimates. Then, we conducted the accuracy assessment (Section 

2.5) following protocols of consistent estimation required for a statistically rigorous 

analysis. The statistical parameters of R-Square (R2) and Root Mean Square Error 

(RMSE) were used. Finally, we analysed the uncertainty from gap-filling models with 

input Landsat data and the uncertainty from comparison datasets by estimating standard 

errors using gap-filling models (Section 2.6) and reporting the uncertainty of the users, 

reference data, and overall accuracies. 

2.1. Study area

We selected three study areas in the conterminous United States (CONUS) (Section 

2.1). These areas are Atlanta, GA; Phoenix, AZ; and Sioux Falls, SD during selected 

years (1991, 2000, 2016, and 2020). The Atlanta area, one of the largest and most 

populated urban centres in the U.S. covers four ARD tiles with a total area of 90,000 

km2 (Figure 1). It is located in northern Georgia, near the Blue Ridge Mountains. The 

area has a population of 6,220,106 in 2022 according to the U.S. Census Bureau 

(https://www.census.gov/). The rural landscapes surrounding the city comprise forest, 

croplands, pastures, hayfields, and water bodies. The area has a humid subtropical 

climate and monthly mean air temperatures of 6.1 ºC in January and 26.8 ºC in July 
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(NWS 2021). The first six months of 2022 were Atlanta's fourth hottest on record, 

according to the National Oceanic and Atmospheric Administration (NOAA). The area 

receives abundant rainfall with an annual average of 1260 mm. 

The second study area is the Sioux Falls metropolitan area and surrounding rural areas 

in South Dakota, United States. The area is within one ARD tile and has a spatial extent 

of 22,500 km2 (Figure 1). The city of Sioux Falls has grown at a rapid pace since the 

late 1970s, with the city’s population increasing from 81,000 in 1980 to 208,884 in 

2022 (https://www.census.gov/). It is the 130th largest city in the US but the largest city 

in South Dakota. The rural landscapes surrounding the city comprise croplands, 

pastures, and hayfields, with patches of forests concentrated in parks, bottomlands, 

shelterbelts, and farmsteads. Within the sub-humid continental temperate climate zone, 

Sioux Falls has warm, humid summers and cold winters with most precipitation 

occurring between April and September (yearly average about 840 mm). The monthly 

mean air temperatures vary from −16.7 to −4.4 °C in winter (December– February) and 

from 16.1 to 30.0 °C in summer (June– August). The area is also known for its strong 

winds which can reach up to 56 km per hour.

Figure 1 near here

The Phoenix area is within two Landsat ARD tiles with a spatial extent of 45,000 km2 

(Figure 1). Phoenix is the most populous city of Arizona, with 1,644,409 residents as of 

2022 (https://www.census.gov/). It is the fifth most populous city and the most 

populated state capital in the country and the only U.S. state capital with a population of 

more than one million residents. Phoenix lies near the confluence of the Gila and Salt 

rivers and is situated at the northern edge of the Sonoran Desert, an arid ecological zone 

whose characteristic plant is the nationally protected saguaro cactus. The area has a 

typical arid subtropical climate. The metropolitan area is known as the "Valley of the 
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Sun" due to its location in the Salt River Valley. The area has monthly mean air 

temperatures of 35 ºC in July and 12 ºC in January, has a large temperature difference 

between day and night, and receives only 185 mm annual average rainfall  (NWS 2021). 

2.2. Reference data and extracting strategy

We selected four existing reference datasets for the study (Table 1). The first one is 

NOAA Global Historical Climatology Network daily (GHCN) (Figure 1 and Table 2), 

an integrated database of daily climate summaries from land surface stations across the 

globe (Menne et al. 2017). GHCN is made up of daily climate records from numerous 

sources that have been integrated and subjected to a common suite of quality assurance 

reviews. NOAA National Centres for Environmental Information (NCEI) provides 

numerous daily variables, including maximum and minimum temperature, total daily 

precipitation, snowfall, and snow depth. About half the stations only report 

precipitation. Both record length and period of record vary by station and cover 

intervals ranging from less than a year to more than 175 years. The second one is 

Moderate Resolution Imaging Spectroradiometer (MODIS), onboard the NASA Terra 

and Aqua Earth Observing System satellites, which provides daily multiple LST 

products.  The most recently Collection 6 (C6) MODIS LST includes three refinements 

over bare soil surfaces compared to the Collection 5 (C5) MODIS LST product (Duan 

et al. 2017; Hulley and Hook 2021). The third one is VIIRS-derived data products that 

are used to measure cloud and aerosol properties, ocean colour, ocean and LST, ice 

movement and temperature, fires, and Earth's albedo. Climatologists use VIIRS data to 

improve our understanding of global climate change archived and distributed through 

the Oak Ridge National Laboratory (ORNL) (Hulley and Hook. 2018). The fourth 

reference dataset is the Daily Surface Weather and Climatological Summaries 

(DAYMET) dataset (Thornton et al. 2021), which provides gridded estimates of daily 
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weather parameters for North America, including daily continuous surfaces of minimum 

and maximum temperature, precipitation occurrence and amount, humidity, shortwave 

radiation, snow water equivalent, and day length.

Table 1 and Table 2 near here. 

We selected climate data from all available GHCN stations (Table 2), which have full 

temperature records for 1991, 2000, 2016, and 2020, as extracting points and converted 

the points to Landsat resolution (30 m × 30 m) from all pixels in the CONUS ARD grid 

system as a mask to spatially match the other existing LST datasets. The total sample 

consisted of 180 points within seven CONUS ARD tiles in three selected study areas. 

We chose this extracting strategy to prioritize four desirable strategy criteria: (1) 

probability based; (2) simple to implement; (3) easy to compare for multiple spatial 

resolution LST datasets; (4) extracting the same locations to GHCN stations. Another 

motivation for implementing the extracting strategy is that GHCN is field observation 

and air temperature but more accurate than other existing remote sensing derived LST. 

Also, we employed a weekly composite of MODIS and VIIRS data, which offers 

improved quality due to the composite algorithm mitigating cloud impact. For example, 

the daily MODIS and VIIRS data often contain large portion of missing values, 

potentially leading to misleading comparison results. Additionally, we used GHCN 

station locations to create 3*3 Landsat pixel (30 m) masks to get average values from 

gap-filled Landsat LST and extract DAYMET (1000 m), MODIS and VIIRS (1000 m), 

and ECOSTRESS (70 m) to be comparable within the same land cover class. The gap-

filled uncertainty layer is used for analysis. 

2.3. Summary of gap-filling method

As summarized in the introduction, we have developed a new method of time series 
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gap-filling that is designed for multi-sensor and multi-time data harmonization. This 

method uses pixels from the orbit overlap region to fill data gaps based on time series 

similarity, which retains the observation variation. Model assembling procedures were 

used to estimate stable predictions that are not only robust to occasionally cloud-

contaminated training data but also allowed us to estimate the uncertainty of the 

predictions (Zhou, Xian, and Shi 2020). In this study all overlap regions in tree study 

areas have more than 21 clear observations, while non-overlap regions often have 

insufficient data. Thus, the 7-parameter linear harmonic model is used to replace those 

cloud-contaminated data, which maintains the details of seasonality in the training data 

(Equation (1)). The procedure for each target pixel that includes clustering the training 

data, stratifying random selection for the target pixel, and predict the full time series 

LST via linear regression (equation (2)). For detailed information see (Zhou, Xian, and 

Shi 2020).

𝑓(𝑡) = 𝑎0 +
𝑚

𝑚=1
𝑎𝑚 cos 2𝜋𝑡

𝐿
+ 𝑏𝑚 sin 2𝜋𝑡

𝐿
 (1)

where 𝑓(𝑡) is the modeled time series for a single pixel location in the overlap region;  

𝑎0describes the mean of 𝑓(𝑡)over the time series; 𝑎𝑚 and 𝑏𝑚 are coefficients for 

harmonic component m; t is day of year; and L is the length of the time period (L = 

365.25). Parameter M (M = 3) determines the highest frequency used for modelling.

𝑦 = 𝛽0 + (𝛽𝑖𝑋𝑖) +  𝜖 (2) 

where 𝛽0 and 𝛽𝑖 represent the linear parameter to be estimated and 𝜖 represents the 

error terms. 𝑋𝑖 and are 𝑦 sampled training data, and the target pixel time series at y are 

clear observation dates.
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2.4. Accuracy assessment

 Accuracy assessment is the procedure used to quantify product quality. Attempts have 

been made to quantify limiting factors resulting from the Landsat low temporal 

availability of data used for generating high frequency LST information at regional 

level. Sub-pixel fractional error matrices are introduced as a more appropriate way for 

assessing the accuracy of mixed pixels. For classification with coarse spatial resolution 

data, limitations of the classification method produce a maximum achievable accuracy 

defined as the average percent fraction of dominant land cover of all pixels in the 

mapped area.  We used a combination of station data, climate data (DAYMET), 

MODIS and VIIRS LST data, and Landsat data to validate the accuracy of the gap-filled 

products. Specifically, we used the following methods. (1) Station validation: We 

selected NOAA GHCN station observation data on temperature and intensity at 20 

randomly selected sites in the study areas. We used a high-resolution digital camera to 

take photographs of the sites, and then used the photographs to estimate temperature 

and SUHI intensity using image analysis software. We compared these data to the 

corresponding data in the gap-filled product to assess the accuracy of the gap-filling 

techniques. (2) Landsat validation: We chose raw Landsat data to validate the accuracy 

of the gap-filled products over time. We compared the Landsat data from multiple time 

periods to the gap-filled product to Landsat data. We estimated temperature and UHI 

intensity using image analysis software and compared the results to the gap-filled 

product. (3) DAYMET LST, MODIS and VIIRS LST data: We also used these data to 

evaluate the gap-filled products. The GHCN station data is a point dataset, and 

DAYMET data is rasterized based on GHCN with 1 km resolution.  The MODIS and 

VIIRS dataset have a spatial resolution of 1 km with 8-day composites. ECOSTRESS is 

a new dataset with limited products. 
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We compared the gap-filled data with the original data to assess the accuracy of the 

gap-filled products using two metrics to evaluate the accuracy: root mean square error 

(RMSE) and the coefficient of determination (R2). The uncertainty analysis was 

conducted to quantify the variability in the gap-filled data. We used the bootstrap 

method to simulate the variability in the gap-filled data and calculated the 95% 

confidence intervals for the gap-filled data. The following equations were used to 

calculate statistical parameters of RMSE and R2:

𝑅𝑀𝑆𝐸 =  ∑𝑁
𝑖=1 (𝐺𝑖 𝑅𝑖)2

𝑁
(3)

where: (𝐺𝑖 ― 𝑅𝑖)2 𝑖𝑠 differences, squared, and N is sample size.

𝑟2 = ∑𝑁
𝑖 (𝑋𝑖 𝜇𝑥) 𝑌𝑖 𝜇𝑦

∑𝑁
𝑖 (𝑋𝑖 𝜇𝑥)2 ∑𝑁

𝑖 𝑌𝑖 𝜇𝑦
2 

2

(4)

where: N is samples, X is the predictor variable, and Y is the response variable in this 

regression model.

2.5. Uncertainty analysis

There are many sources of uncertainty in Landsat gap-filling processing, such as clear 

observation training collection, QA band issues, and the modelling approach issues. The 

gap-filled Landsat LST is generally based on clustering of spatial entities within a 

spectral space. One major concern is the use of seasonal models to predict the 

variability of LST into several discrete dates within seasons. This type of approach is 

often inappropriate given the continuous values by regression model, which usually 

provides overestimated prediction in the high end and underestimated prediction in the 

low end. This leads to uncertainty in the products resulting from the use of remote 
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sensing data. Based on the assumption that any gap-filled Landsat LST has an 

associated error and/or uncertainty of unknown magnitude, the statistical quantification 

of uncertainty analysis should be a core part of scientific research. In this study we 

analysed uncertainty layers from Landsat gap-filling models and reviewed recent 

attempts to take explicitly into uncertainty when mapping LST. We used the Landsat 

gap-filling uncurtaining layers that calculated the standard deviation (SD) of iterations 

for each prediction as an indicator of uncertainty. Standard deviation is often used to 

quantify the level of uncertainty in a set of measurements. In the context of gap-filling, 

it is used to indicate the degree of uncertainty of gap-filled LST for the pixel. The 

magnitude of the standard deviation is directly proportional to the level of uncertainty of 

the pixel. In other words, the larger the standard deviation is, the more uncertainties of 

the pixel exist. The results have the same structure as ARD tiles with all missing data 

filled, using the following formula:

𝜎 = 1/𝑛 ∑𝑛
𝑖=1 (𝑥 ― 𝜇)2 (5)

where: 𝜎 is SD, n is the number of filled LST, x is filled LST, and 𝜇 is mean of filled 

LST. 

2.6. Comparison analysis

The synthesis and comparison of spatial data collected or derived at different spatial 

resolutions with various uncertainty factors is challenging work in geospatial statistics 

(Gotway and Young 2002). The geostatistical concept of support belongs to one of 

spatial scales, in which it is a property of a variable used in comparison analysis. The 

support can be as small as a point or as large as the full extent of the study area. In this 

study, the spatial unit, which is based on GHCN station with Landsat 9 pixels mask, 
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used to sample the multiple LST and climate datasets have also been considered in the 

support of the data. Comparison results (RSME, standard deviation, spatial 

autocorrelation, and others) can sometimes be estimated using geostatistical support-

effect models. We present the case studies of LST illustrating some of these differences 

and how conclusions about zonal mean of temperature may be affected. We identify the 

influence of GHCN observational air temperature on statistical results as a local zonal 

mean temperature.  The way to avoid the station air temperature is by careful 

construction of sampling design and analysis. 

3. Results

3.1. Landsat ARD gap-filled LST

The study conducted in the three selected cities in 1991, 2000, 2016, and 2020 

demonstrated that the Landsat ARD gap-filled products can better differentiate the 

performances of the spatiotemporal gap-filling model with improved training data 

strategy. The top row of Figures 2 (Atlanta), 3 (Sioux Falls), and 4 (Phoenix) shows the 

examples of the gap-filled Landsat LST from different dates. The original Landsat LST 

only covered part of the tiles (bottom row) and was contaminated by scattered clouds. 

By closely comparing these pair maps, the gap-filled Landsat LST showed a similar 

value range to the Landsat LST observations in clear areas. Both observations and gap-

filled showed high LST in urban (or bare) areas and low LST along forest or water 

areas. The spatial distribution patten of gap-filled Landsat LST is associated well with 

urban land and most of high values are located within the city limits in Atlanta and 

Sioux Falls.  

The gap-filling LST results are promising when compared to the spatial patterns of the 

GHCN station dataset. The gap-filled LST showed more spatial detail and variation than 
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other LST data because these products, including MODIS/VIIRS and ECOSTRESS are 

at 500 m (daily) and 1000 m (8-day composite) while the gap-filling procedure is at 30-

m scale. Temporally, the gap-filled products revealed more detailed seasonal and 

monthly variations, which can potentially be used to study seasonal SUHI change. 

Figures 2, 3, and 4 near here. 

3.2. Accuracy assessment

We used randomly selected GHCN observation data as the validation datasets, in which 

over 350 days per year of air temperature records are available. By comparing the 3x3 

pixel average LST with weather station records, we found that the gap-filled Landsat 

LST data had good agreement with the data from GHCN in all three study areas. 

Figures 5, 6, and 7 represent the time series of observed and gap-filled Landsat LST in 

36 GHCN field stations from 1991, 2000, 2016, and 2020 with different Landsat 

sensors within three study areas. The GHCN air temperature is also displayed as a 

reference of seasonal temperature pattern in the three selected study areas. The gap-

filled values followed well with observations except for several scattered outliers in 

specific dates and stations, while both observed and gap-filled summer LSTs are higher 

than the station air temperatures. The outliers in Figure 5 with very low LST came from 

Landsat 8 images that were mostly covered by clouds, but pixel QA only flagged part of 

the images as cloud or cloud shadow. Similarly, the low LST at the peak of the summer 

in Figure 5 also came from cloud-contaminated observations (Landsat 5 and 7 image). 

Figure 6 shows that the LST gap-filled model didn’t perform well in winter months 

because of snow cover and limited clear observation for training. To assess the accuracy 

quantitatively, the RMSE and R2 of observed LST with GHCN and gap-filled Landsat 

LST with GHCN were calculated (Tables 3, 4, and 5). Generally, the gap-filled Landsat 

LST has a better range of RMSE than the Landsat LST product accuracy, indicating the 
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algorithms have successfully filled the LST. The RMSE of the gap-filled Landsat LST 

data ranged from 1.5 to 4.2°C (see Table 3) in Atlanta, 1 to 5 °C in Sioux Falls (Table 

4), and 0.5 to 3°C in Phoenix (Table 5). The gap-filled data has a significant 

relationship with GHCN validation data. We compared both original clear Landsat LST 

(in brackets is the number of clear observations in Tables 3, 4, and 5 and gap-filled 

Landsat LST with GHCN air temperature. The correlation between GHCN and gap-

filled LST is similar with (or lower than) GHCN and the original Landsat clear 

observation if the number of gap-filled LST close or equal the number of original clear 

observation, the average R2 values of all stations is about 0.81 and 0.68 (p<0.05) in 

Atlanta (Table 3) , 0.74 and 0.81 (p<0.05) in Sioux Falls (Table 4), 0.82 and 0.74 

(p<0.05) in Phoenix (Table 5). Some of the gap-filled Landsat LST show large 

variations, while observations are consistent at low or high values. As the GHCN station 

data were randomly selected and expanded to 9 Landsat pixels, we went through most 

gap-filled images and found that some cloud or cloud shadow pixels were labelled as 

clear observations by the Landsat pixel QA band, which were not filled and could lead 

to the consistently high or low values of gap-filled LST. 

 Tables 3, 4, and 5 near here

Figures 5, 6, and 7 near here

The gap-filled Landsat LST products, on average, slightly overestimate LSTs in urban 

and bare areas and underestimate LSTs in other land cover in all three study areas. 

Atlanta (Figure 5), located in a subtropical humid climate condition, has relatively small 

seasonal or annual temperature variations compared with other study areas. Phoenix 

(Figure 7), in a subtropical arid land climate condition, has more clear observations for 

training, resulting in better performance of the gap-filling model than in Sioux Falls 

(Figure 6), which is located in a moderate temperate continental climate condition with 
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snow cover in winter and has less training data available.

3.3. Uncertainty analysis

We also analysed the uncertainty of the gap-filled Landsat surface temperature data 

using a Monte Carlo simulation. The simulation randomly sampled the input data from 

their respective probability distributions and calculated the resulting distribution of the 

gap-filled data. The simulation showed that the uncertainty of the gap-filled Landsat 

LST data was primarily determined by the uncertainty in the input Landsat data, 

followed by the uncertainty in the auxiliary data and model parameters. Figure 8 shows 

the spatial distribution of the yearly number of clear observations of Landsat (top) and 

annual mean of gap-filling models uncertainty map (bottom) in 2016 and 2020 in the 

three study areas. Table 6 gives the maximum, mean, and minimum number of clear 

observations and uncertainty values for the same times. Table 6 also shows that 1) in 

Atlanta, 55% of pixels have prediction uncertainties of ±0.65 °C in 2016 and ±0.97 °C 

in 2020 with annual mean LST of 19.2 °C in 2016 and 18.4 °C in 2020; 2) in Sioux 

Falls, over 50% of prediction uncertainties are around ±0.94°C in 2016 and ±2.08°C in 

2020 with annual mean LST of 13.9 °C in 2016 and 13.6 °C in 2020; 3) in Phoenix, 

about 60% of prediction uncertainties are about ±0.76°C in 2016 and ±0.68°C in 2020 

with annual mean LST of 29.2 °C in 2016 and 29.9 °C in 2020. The gap-filled products 

from the gap-filling model have better results in Atlanta and Phoenix, except for 

individual outliers. The uncertainty is high in Sioux Falls because it has fewer clear 

observation for training data due to snow/ice cover in wintertime. The uncertainty is 

low in Phoenix because it has more observations for training data than the other two 

areas. 

Table 6 near here, 
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We used 9-pixel masks to calculate the mean of prediction uncertainty by using GHCN 

data (Figure 8). 

Figures 8 and 9 near here. 

The factors affecting gap-filled Landsat LST product accuracy could come from several 

sources including violations of the fundamental assumptions underlying the approach, 

Landsat swath overlap areas, seasonal linear regression algorithm, errors in the 

collection training dataset by using the QA band, and Landsat thermal data quantity and 

quality (Figure 9). For example, the gap-filled products have higher value of accuracy 

assessment in Phoenix due to high availability of clear observations for training data 

(Figure 9C). The gap-filled products have lower value of accuracy assessment in Sioux 

Falls due to snow/ice cover even it is a clear observation, because of the lack of clear 

observation, the gap-filling modelling approach assumes that the spectral behaviour of 

LST through time can only be represented with seasonal harmonic models that are used 

for training all dates during periods of time with limited training data. Therefore, the 

model output is expected to be better in winter when training data is extracted from 

warm months (dates) and the regression model that has a high uncertainty in snow cover 

dates. Figures 9B show high uncertainty values in the early dates of the year (mostly in 

January and February in Sioux Falls). We also checked the original Landsat images for 

these pixels having high uncertainty value by dates and location in Figures 8 and 9.  

Most of these pixels have cloud cover or no clear observation available. All these 

factors, such as snow cover and limited training data with seasonal model, depend on 

the regional geography and vary across different climate zones. For example, the 

quantity of available cloud- and snow-free Landsat data varies considerably in these 
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three study areas and is shown by the presence of swath overlap zones of Landsat 

acquisition footprints within ARD tiles. How the algorithm responds to these variations 

in input data can impact the accuracy of the gap-filled products. For the gap-filling 

model, the selection of training data and accuracy of training data labels may both exert 

considerable influence on accuracy. Decisions made with respect to the filtering and 

balance of the pool of seasonal training data points may have different effects on 

accuracy of LST. Finally, using overlapped and clear observations from adjacent ARD 

tiles in training models improved the models and removed a source of error that arose 

from the gap-filling model design.

3.4. Comparison analysis

We compared the gap-filled Landsat LST with three other large-scale time series LST 

products including MODIS, VIIRS, ECOSTRESS, and rasterized DAYMET climate 

data. We also compared these LST datasets with GHCN station observations. We 

created 3x3 Landsat pixels based on GHCN points as a centre pixel to match coarse 

LST datasets. The comparison shows that the gap-filled Landsat LST matches the 

GHCN air temperature better than the others, except for DAYMET data. We did 

compare DAYMET with GHCN, and they are well matched with R2 = 0.99 in most 

cases. We utilized MODIS and VIIRS 8-day composites due to their superior data 

quality compared to daily data, primarily because of the impact of cloud cover. 

Specifically, the daily MODIS and VIIRS data often contain numerous missing values, 

even on clear-sky days. This makes it challenging to compare them with gap-filled Land 

Surface Temperature (LST) data at a 3x3 30 m pixel size based on GHCN locations. By 

filtering out cloud pixels from the daily ECOSTRESS data using pixel QA information, 

we found that there isn’t enough usable data available. Additionally, ECOSTRESS data 

is only available for the year 2020. Table 7 shows R2 and RMSE from the selected 
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GHCN station locations. In general, gap-filled LST attains the accuracy that is broadly 

consistent with accuracy of these other existing LST datasets. For example, in the daily 

data comparison, gap-filled has low or similar RMSE to VIIRS in 2020 and 

ECOSTRESS has the highest RMSE. One reason is the gap-filled and ECOSTRESS 

LSTs have daily data, but VIIRS and MODIS LSTs are 8-day composite data that have 

better results with cloud and bad pixels fixed. For monthly and seasonal, all datasets 

have similar patterns with GHCN except ECOSTRESS. 

Table 7. near here

4. Discussion

This study presented a comprehensive accuracy assessment, uncertainty analysis, and 

multi-dataset comparison for evaluating the gap-filled Landsat LST data. The multi-

disciplinary history provided conveys the complexity of the issues encountered in vali-

dating and comparing multiple source spatial data and the widespread interest in solu-

tions that have been developing over several decades. This is now an active area of re-

motely sensed data fusion and gap-filling research, and much novel research work has 

recently been developed (Roy and Yan 2020; Zhu et al. 2022).

Our results show that the product using gap-filling techniques has high accuracy for 

estimating annual, seasonal, and even monthly thermal condition for UHI and trends 

analysis. It also shows that the gap-filling algorithm is effective in filling missing values 

in remote sensing data. However, the accuracy of the gap-filled data varied depending 

on the test site with type of climate zones. The application of models was more accurate 

in arid areas (Arizona) than in humid regions (Georgia). However, the model outcomes 

in South Dakota are similar with these in other two locations in summer but are not 

good in winter months due to snow/ice cover. The RMSE values were lower in the 
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urban site than in the other land covers, while there was no significant difference of 

RMSE in different geographical regions. The correlation coefficient was higher in the 

arid region than in the humid region. The uncertainty analysis showed that the 

variability in the gap-filled data was higher in the semi-arid region of Arizona than in 

the humid region of Georgia. The uncertainty affecting gap-filled Landsat LST product 

accuracy could arise from several sources including modelling approach, seasonal linear 

regression algorithm, errors in the collection training dataset by using the QA band, and 

Landsat thermal data quantity and quality. The comparison analysis reveals that gap-

filled Landsat LSTs are more accurate in monthly and seasonal estimates.

Several limitations are found to the current study. First, the validation data sources used 

in our study have their own uncertainties, and these uncertainties may propagate into 

our assessment of the accuracy and uncertainty of the gap-filled Landsat LST. 

Additionally, NOAA GHCN records air temperatures that are different from gap-filled 

and other LST datasets. Second, we only evaluated our own gap-filling techniques. 

Third, we only used Landsat data and our results may not be applicable to other remote 

sensing datasets. Fourth, our study only evaluated the accuracy and uncertainty of the 

gap-filled products at the 9 pixel (30x30 m) and two Landsat ARD tile levels 

(5000x5000 m). Future studies may need to investigate the accuracy and uncertainty at 

the continental or global scale.

Gap-filling can introduce uncertainty into the final products because of combining 

factors including input data and models selection (Friedl et al. 1995; Murphy et al. 

2004; Zhou, Xian, and Shi 2020; Rounsevell et al. 2021). Depending on the method 

used, gap-filling can be a complex and computationally intensive process. Gap-filling 

requires access to multiple dates of data, and the availability of these data may be 

limited in some regions or for certain time periods because of missing data, cloud and 
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shadow, and snow and ice cover (Gao et al. 2006; Zhu et al. 2022). The accuracy of 

gap-filling can be affected by spatial and temporal variability in the data. For example, 

filling in missing data in a forested area may be more difficult than in an area with 

lower temperature. Different methods may be more or less suitable for different types of 

data or for different applications (Rocchini et al. 2013; Leyk et al. 2018; Stehman and 

Foody 2019). Gap-filling relies on the quality of the surrounding data to estimate 

missing values (Zhang et al. 2020; Zhou, Xian, and Shi 2020). If the surrounding data is 

poor quality or affected by noise, the accuracy of the gap-filled data may be 

compromised. Validating the accuracy and reliability of the gap-filling data can be 

challenging, as there may not be ground-based measurements or other independent 

sources of data available for comparison except air temperature from weather station 

observations. Also, as it is difficult to determine the true value of missing data, it can 

make it difficult to evaluate the accuracy of the gap-filling method. 

Future work may need to address some of the limitations of this study by focusing on 

investigating the accuracy and uncertainty of gap-filled products using other remote 

sensing datasets and at different spatial and temporal scales. Additionally, the impact of 

the gap-filling techniques on the accuracy of downstream analyses, such as thermal 

condition, vegetation indices and land cover classifications, should be investigated. 

Future studies may need to investigate the accuracy and uncertainty at the regional or 

global scale. Other topics may need further attention: 1) Machine learning techniques, 

such as deep learning and artificial neural networks, which could offer better accuracy 

and un-certainty estimates for gap-filled products. 2) Investigation of the impact of gap-

filling techniques on downstream analyses for other landscapes in addition to urban. 3) 

Evaluation of the accuracy and uncertainty of gap-filling products over longer time 

periods and larger spatial scales. 4) Development of auto-standardized methods for 
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evaluating gap-filled products by using other existing remote sensing derived LST 

products. Standardized methods for evaluating the accuracy and uncertainty of gap-

filled products would facilitate comparison and benchmarking of different techniques 

and products.

5. Conclusion

Gap-filling accuracy assessment, uncertainty analysis, and comparison analysis 

are essential to ensure the reliability of gap-filled Landsat LST products. This 

paper presents the results of accuracy assessment, uncertainty analysis, and 

comparison analysis of a new time series gap-filled Landsat LST that is modelled 

from multi-sensor and multi-time Landsat data harmonization. Landsat LST 

observations within the ARD tiles without gap filling are not adequate to represent 

temporal frequency of surface thermal conditions in a time series, resulting in 

either overestimates or underestimates of their seasonal or annual temporal means. 

The Landsat LST with gap-filling substantially added temporal density for daily 

Landsat LST records and can be used to calculate monthly and seasonal Landsat 

LST. This increased frequency Landsat time-series LST provides an optional 

temperature source for SUHI monitoring, assessment, and trend analysis. The 

gap-filled Landsat LST has significant correlations with air temperature recorded 

from gridded weather records, suggesting similar daily, monthly, and seasonal 

variation patterns between the two datasets. The data can be used in longtime 

time-series SUHI and intensity annual, seasonal, even monthly change analysis. 

Furthermore, we demonstrate that widespread uncertainty is occurring across our 

study area and this uncertainty is influencing the gap-filled Land-sat LST. 

Our study provides important insights into the accuracy of gap-filling techniques 

for gap-filled products derived from remote sensing data. By assessing the 
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accuracy of the techniques, we can provide the information of reliability and 

usefulness of remote sensing data products for various applications. In conclusion, 

our study shows that gap-filling techniques are effective in filling missing values 

in remote sensing data. However, the accuracy of the gap-filled data varied 

depending on the test site and the type of gap-filling models used. The accuracy 

assessment showed that the models performed better in arid regions than in humid 

regions. Also, the model results are similar in in summer months in all regions. 

The uncertainty analysis indicates that the variability in the gap-filled data is 

higher in the arid and semi-arid regions than in humid region.  The variability is 

larger in the cold region than the warm region during winter months.
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Table 1. Main data sources used in the study. 

Table 2, NOAA GHCN Station ID (Figure 1), Latitude (Lat.) and Longitude (Lon.), 

Name, and Land Cover Class (LC, 2020) in three study areas.

Table 3. The correlation (R2) and Root Mean Square Error (RMSE) in selected NOAA 

GHCN stations for annual accuracy assessment, Atlanta, GA. 

Table 4. The correlation (R2) and Root Mean Square Error (RMSE) in selected NOAA 

GHCN stations for annual accuracy assessment, Sioux Falls, SD.

Table 5. The correlation (R2) and Root Mean Square Error (RMSE) in selected NOAA 

GHCN stations for annual accuracy assessment, Phoenix, AZ.

Table 6. The number of Landsat clear observations and gap-filled uncertainty (°C) in 

2016 and 2020.

Table 7. The correlation (R2) and Root Mean Square Error (RMSE), selected NOAA 

GHCN stations for comparison analysis among GHCN, gap-filled LST, MODIS LST, 

VIIRS LST, and ECOSTRESS LST by daily, monthly, and seasonal for three study 

areas in year 2016 and 2020.
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Figure 1. The zoom in 2020 land cover map for three selected study areas within the 

ARD tiles, GHCN station location are white-purple boxes associate with the ID number 

in black (the ID, name, land cover class, and detailed information of each station see 

Table 2). These Land cover map of individual urban centre are not at the same scale.

Figure 2. Gap-filled Landsat LST (top) and Original Landsat (5, 7, and 8) LST (bottom) 

in Atlanta, GA in 1991, 2000, 2016 and 2020 from left to right.

Figure 3. Gap-filled Landsat LST (top) and Original Landsat (5, 7, and 8) LST (bottom) 

in Sioux Falls, SD in 1991, 2000, 2016 and 2020 from left to right.

Figure 4. Gap-filled Landsat LST (top) and Original Landsat (5, 7, and 8) LST (bottom) 

in Phoenix, AZ in 1991, 2000, 2016 and 2020 from left to right.

Figure 5. Time series of land surface temperature and air temperature at 12 stations in 

Atlanta, GA. The blue boxes are valid Landsat observations, and red dots are gap-filled 

values at each Landsat acquisition date. The black triangles are station air temperature 

that match all Landsat acquisition dates within an ARD tile in Atlanta, GA 

(https://www.ncdc.noaa.gov/ghcn-daily-description). Information of GHCN stations see 

the Figure 1 and Table 2.

Figure 6. Time series of land surface temperature and air temperature at 12 stations in 

Sioux Falls, SD. The blue boxes are valid Landsat observations, and red dots are gap-

filled values at each Landsat acquisition date. The black triangles are station air 

temperature that match all Landsat acquisition dates within an ARD tile in Atlanta, GA 

(https://www.ncdc.noaa.gov/ghcn-daily-description). Information of GHCN stations see 

the Figure 1 and Table 2.

Figure 7. Time series of land surface temperature and air temperature at 12 stations in 

Phoenix AZ. The blue boxes are valid Landsat observations, and red dots are gap-filled 

values at each Landsat acquisition date. The black triangles are station air temperature 

that match all Landsat acquisition dates within an ARD tile in Atlanta, GA 

(https://www.ncdc.noaa.gov/ghcn-daily-description). Information of GHCN stations see 

the Figure 1 and Table 2.
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Figure 8. Annual clear observation (top) and annual mean of gap-filled uncertainty 

(bottom) for three study areas in year 2016 and 2020.

Figure 9. Uncertainty of gap-filling models in the three study areas: Atlanta (A), Sioux 

Falls (B), and Phoenix (C) by selected NOAA GHCN validation stations in 2020 (top) 

and 2016 (bottom). X axis is dates of year and Y axis is uncertainty values from the 

gap-filling model. The information of GHCN stations see Figure 1 and Table 2.
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Table 1. Main data sources used in the study. 

Name Type Resolution Temporal  Spectral 
accuracy 

Source

Landsat ARD ~0.5 kelvin (vary
LST Collection 1 LST 30 m 7 days by pixel) USGS

GHCN Air Temp. points Daily - NOAA
MODIS LST LST 1000 m Weekly 1.5~2.5 kelvin NASA
VIIRS LST LST 1000 m Weekly 1.5~2.5 kelvin NASA

ECOSTRESS LST 70 m Daily 1~2 kelvin NASA
DAYMET LST 1000 m monthly - ORNL
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Table 2, NOAA GHCN Station ID (Figure 1), Latitude (Lat.) and Longitude (Lon.), Name, and Land Cover Class (LC, 2020) in three study 
areas.

Atlanta, GA Sioux Falls, SD Phoenix, AZ
ID Name Lat. Lon. LC** ID Station Name Lat. Lon. LC ID Station Name Lat. Lon. LC 
1 USC00091640 33.60 -85.08 90 22 USC00211263 43.50 -96.70 81 50 USC00020632 33.81 -111.65 52
2 USC00092485 34.00 -84.75 21 23 USC00216565 43.46 -96.73 81 50 USW00093139 33.82 -111.90 52
3 USC00099486 34.30 -83.86 81 25 USC00390128 43.48 -96.76 21 51 USC00021282 33.60 -111.71 52
4 USC00098740 33.33 -83.70 22 26 USC00391032 43.52 -96.67 22 52 USC00023190 33.55 -111.44 22
5 USW00013874 33.63 -84.44 24 27 USC00391076 43.54 -96.68 81 53 USC00025700 33.56 -111.54 52
6 USC00091665 34.20 -84.79 21 28 USC00392302 43.53 -96.81 23 54 USC00028214 33.43 -111.92 90
7 USC00092180 34.26 -83.49 22 33 USC00392984 43.54 -96.84 21 55 USC00028499 33.60 -112.30 21
8 USC00096335 33.40 -84.91 71 35 USC00394037 43.58 -96.80 21 56 USC00029634 33.43 -112.00 24
9 USC00092006 34.17 -84.73 43 36 USW00014944 43.52 -96.75 24 57 USW00023183 33.34 -112.15 22
10 USC00098950 33.87 -83.54 81 37 USC00395090 43.50 -96.79 81 58 USC00027281 33.46 -111.48 52
11 USC00092318 33.60 -83.84 21 40 USC00399042 43.53 -96.75 21 59 USC00020288 33.50 -112.36 21
12 USC00094700 33.53 -84.35 24 41 USC00390422 43.50 -96.67 71 60 USC00025521 33.11 -112.03 22
13 USW00053819 33.36 -84.57 21 44 USW00094950 43.55 -96.66 82 61 USC00025270 33.07 -111.77 71
14 USC00099466 33.93 -83.73 81 45 USC00390281 43.59 -96.73 21 62 USC00027370 33.21 -111.68 24
15 USW00003888 33.78 -84.52 21 45 USC00397666 43.51 -96.67 81 63 USC00021514 33.38 -112.07 21
16 USW00053838 34.27 -83.83 22 46 USC00395671 43.55 -96.63 95 64 USC00028112 33.69 -112.08 22
17 USW00053863 33.88 -84.30 23 65 USW00003184 33.78 -112.52 21
18 USC00093271 33.26 -84.28 23 66 USC00029464 33.62 -111.91 21
19 USW00053873 34.12 -84.85 23 67 USW00003192 33.48 -111.93 24
20 USC00092283 34.23 -84.13 23
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Table 3. The correlation (R2) and Root Mean Square Error (RMSE) in selected NOAA 

GHCN stations for annual accuracy assessment, Atlanta, GA. 

Station name Year LC* No.  Obs. # R2 RMSE
G+ (O^) G O vs. V‡ G vs. V O vs. V G vs. V

USC00092283 22 23 (19) 31 0.70 0.79 6.31 6.41
USC00099466 1991 81 22 (18) 31 0.84 0.86 4.57 3.92
USC00098740 21 14 (12) 31 0.77 0.78 6.44 6.96
USC00098950 81 30 (28) 79 0.77 0.84 7.57 5.98
USC00092180 2000 22   38 (38) 79 0.63 0.76 7.77 6.13
SW00053863 24   28 (23) 79 0.83 0.81 9.33 11.01
USC00099486 81   24 (26) 86 0.74 0.81 5.61 2.88
USW00053838 2016 23  45 (45) 86 0.88 0.82 5.64 5.68
USC00094700 22  24 (24) 86  0.70 0.85 6.16 8.56
USC00092006 41  60 (38) 83 0.48 0.72 7.81 3.49
USC00092283 2020 23  56 (29) 83 0.44 0.80 9.84 5.81
USC00091965 23  62 (38) 83 0.36 0.82 12.47 6.09
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Table 4. The correlation (R2) and Root Mean Square Error (RMSE) in selected NOAA 

GHCN stations for annual accuracy assessment, Sioux Falls, SD.

Station name Year LC No.  Obs. R2 RMSE
G (O) G O vs. V G vs. V O vs. V G vs. V

USW00014944 24 12 (9) 38 0.94 0.79 4.34 7.19
USC00395090 1991 81 9 (9) 31 0.88 0.75 6.04 9.74
USC00390128 21 17 (17) 38 0.98 0.86 3.26 6.24
USC00216565 81 43 (32) 96 0.89 0.58 6.14 10.44
USC00390281 2000 21 34 (25) 96 0.88 0.74 5.09 5.29
USC00392984 23 18 (12) 96 0.84 0.56 6.37 10.74
USW00014944 24 25 (14) 117 0.87 0.76 6.43 8.14
USC00211263 2016 81 66 (22) 117 0.73 0.59 5.48 10.31
USC00391076 23 66 (16) 117 0.73 0.78 4.27  8.37
USC00391032 22 58 (25) 125 0.59 0.74 11.44 9.85
USC00395090 2020 81 26 (13) 125 0.57 0.68 11.48 8.48
USW00014944 24 30 (13) 125 0.77 0.70 9.23 8.31
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Table 5. The correlation (R2) and Root Mean Square Error (RMSE) in selected NOAA 

GHCN stations for annual accuracy assessment, Phoenix, AZ.

Station name Year LC No.  Obs. R2 RMSE
G (O) G O vs. V G vs. V O vs. V G vs. V

USW00023183 22 16 (8) 31 0.85 0.71 9.07 9.37
USW00093139 1991 52 27 (13) 31 0.41 0.81 9.28 7.52
USC00025270 71 26 (16) 31 0.77 0.72 10.22 9.85
USC00021282 52 34 (33) 83 0.87 0.88 10.43 11.38
USC00023190 2000 22 61 (60) 78 0.84 0.85 5.86 5.82
USC00025512 23 33 (31) 83 0.80 0.79 8.70 8.79
USW00093139 52 66 (54) 89 0.73 0.79 5.32 5.89
USW00023183 2016 22 66 (30) 89 0.73 0.79 7.15 6.13
USW00003192 24 46 (41) 89 0.81 0.85 12.15 12.52
USC00020288 24 64 (53) 88 0.91 0.89 6.94 9.28
USC00027281 2020 52 61 (37) 88 0.59 0.89 13.38 7.59
USC00028499 24 74 (60) 88 0.59 0.85 9.67 7.75
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Table 6. The number of Landsat clear observations and gap-filled uncertainty (°C) in 

2016 and 2020.

Atlanta, GA (H24V13) Sioux Falls, SD (H16V06) Phoenix, AZ (H07V13)
Year Class* Clear Obs. Uncertainty Clear Obs. Uncertainty Clear Obs. Uncertainty

H 1 2.25 1 4.65 4 2.34
2016 M 30 0.65 25 0.94 41 0.76

L 61 0.3 46 0.3 70 0.03
H 1 4.95 1 4.71 1 3.68

2020 M 21 0.97 22 1.08 45 0.68
L 48 0.3 40 0.3 79 0.3
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Table 7. The correlation (R2) and Root Mean Square Error (RMSE), selected NOAA 

GHCN stations for comparison analysis among GHCN, gap-filled LST, MODIS LST, 

VIIRS LST, and ECOSTRESS LST by daily, monthly, and seasonal for three study 

areas in year 2016 and 2020.

Station Frequency No. 
Sample

GHCN vs.
Gap-filled

GHCN vs.
VIIRS (MODIS)

GHCN vs.
ECOSTRESS

RMSE R2 RMSE R2   RMSE R2

USC00094648 Daily 84 5.77 0.76 6.35 0.64 10.34 0.42
Atlanta, GA Monthly 12 7.0 0.97 5.31 0.92 8.72 0.61
2020 (Urban) Seasonal 4 6.05 0.98 4.89 0.96 8.49 0.74
USC00097827 Daily 84 5.27 0.77 4.88 0.66 4.51 0.30
Atlanta, GA   Monthly 12 4.69 0.98 2.25 0.94 4.87 0.49
2020 (Forest) Seasonal 4 3.68 0.99 1.91 0.94 5.05 0.46
USC00098740 Daily 87 6.35 0.88 7.51 0.87 - -
Atlanta, GA Monthly 12 7.60 0.92 7.68 0.91 - -
2016 (Urban)   Season 4 7.79 0.94 10.79 0.95 - -
USW00014944 Daily 125 8.45 0.69 7.57 0.87 10.96 0.57
Sioux Falls, SD Monthly 12 6.07 0.87 7.16 0.94 6.45 0.80
2020 (Urban) Season 4 4.02 0.99 6.66 0.97 13.53 0.87
USC00391076 Daily 125 9.25 0.67 8.05 0.78 10.75 0.54
Sioux Falls, SD Monthly 12 9.25 0.85 8.05 0.90 10.75 0.77
2020 (Agri.) Season 4 5.8 0.93 6.71 0.93 12.55 0.87
USW00094950 Daily 117 6.7 0.80 5.53 0.84 - -
Sioux Falls, SD Monthly 12 4.93 0.95 2.94 0.96 - -
2016 (Urban) Seasonal 4 2.70 0.99 1.03 0.98 - -
USC00023190 Daily 89 4.93 0.87 11.38 0.92 11.05 0.67
Phoenix, AZ Monthly 12 4.43 0.98 11.16 0.94 13.60 0.43
2020 (Urban) Season 4 2.50 0.98 6.31 0.96 13.70 0.18
USC00027281 Daily 89 7.04 0.90 9.31 0.89 9.93 0.66
Phoenix, AZ Monthly 12 7.62 0.99 8.63 0.96 10.02 0.88
2020 (Shrub) Season 4 3.97 0.99 4.93 0.98 9.59 0.82
USW00003192 Daily 89 6.14 0.89 8.92 0.82 - -
Phoenix, AZ Monthly 12 5.85 0.97 7.87 0.95 - -
2016 (Urban) Season 4 2.86 0.88 3.34 0.87 - -
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Figure 1. The zoom in 2020 land cover map for three selected study areas within the 

ARD tiles, GHCN station location are white-purple boxes associate with the ID number 

in black (the ID, name, land cover class, and detailed information of each station see 

Table 2). These Land cover map of individual urban centre are not at the same scale.
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Figure 2. Gap-filled Landsat LST (top) and Original Landsat (5, 7, and 8) LST (bottom) 

in Atlanta, GA on the selected dates of 1991, 2000, 2016 and 2020 from left to right.
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Figure 3. Gap-filled Landsat LST (top) and Original Landsat (5, 7, and 8) LST (bottom) 

in Sioux Falls, SD on the selected dates of 1991, 2000, 2016 and 2020 from left to right.
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Figure 4. Gap-filled Landsat LST (top) and Original Landsat (5, 7, and 8) LST (bottom) 

in Phoenix, AZ on the selected dates of 1991, 2000, 2016 and 2020 from left to right.
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Figure 5. Time series of land surface temperature and air temperature at 12 stations in 

Atlanta, GA. The blue boxes are valid Landsat observations, and red dots are gap-filled 

values at each Landsat acquisition date. The black triangles are station air temperature 

that match all Landsat acquisition dates within an ARD tile in Atlanta, GA 

(https://www.ncdc.noaa.gov/ghcn-daily-description). Information of GHCN stations see 

the Figure 1 and Table 2.
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Figure 6. Time series of land surface temperature and air temperature at 12 stations in 

Sioux Falls, SD. The blue boxes are valid Landsat observations, and red dots are gap-

filled values at each Landsat acquisition date. The black triangles are station air 

temperature that match all Landsat acquisition dates within an ARD tile in Sioux Falls, 

SD (https://www.ncdc.noaa.gov/ghcn-daily-description). Information of GHCN stations 

see the Figure 1 and Table 2.
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Figure 7. Time series of land surface temperature and air temperature at 12 stations in 

Phoenix AZ. The blue boxes are valid Landsat observations, and red dots are gap-filled 

values at each Landsat acquisition date. The black triangles are station air temperature 

that match all Landsat acquisition dates within an ARD tile in Phoenix, AZ 

(https://www.ncdc.noaa.gov/ghcn-daily-description). Information of GHCN stations see 

the Figure 1 and Table 2.
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Figure 8. Annual clear observation (top) and annual mean of gap-filled uncertainty 

(bottom) for three study areas in year 2016 and 2020.
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Figure 9. Uncertainty of gap-filling models in the three study areas: Atlanta (A), Sioux 

Falls (B), and Phoenix (C) by selected NOAA GHCN validation stations in 2020 (top) 
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and 2016 (bottom). X axis is dates of year and Y axis is uncertainty values from the 

gap-filling model. The information of GHCN stations see Figure 1 and Table 2.
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