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Introduction
1.1 WHY STUDY SOILePLANTeWATER RELATIONS?

1.1.1 Population

Of the four soil physical factors that affect plant growth (mechanical
impedance, water, aeration, and temperature) (Shaw, 1952; Kirkham,
1973), water is the most important. A classic analysis was done by Boyer
(1982) to determine the reasons for crop losses over a four-decade period
in the United States. He found that drought causes 40.8% of crop losses
and excess water causes 16.4%. Insects and diseases amount to 7.2% of the
losses. Thus, soils that are too dry or too wet are the major reasons for lost
productivity.

People depend upon plants for food. Because water is the major
environmental factor limiting plant growth, we need to study soile
plantewater relations to provide food for a growing population. What is
our challenge?

The earth’s population is growing exponentially. The universe is now
considered to be 13,000,000,000 (13 thousand millions or 13 billion) years
old (Zimmer, 2001). The earth is thought to be 4.45 billion years old
(Allègre and Schneider, 1994). The earth’s oldest rock is 4.03 billion years
old (Zimmer, 2001). Primitive life existed on earth 3.7 billion years ago,
according to scientists studying ancient rock formations harboring living
cells (Simpson, 2003). Human-like animals have existed on earth only in
the last few (less than 8) million years. In Chad, Central Africa, six
hominid specimens, including a nearly complete cranium and fragmen-
tary lower jaws, have been found that are 6e7 million years old (Brunet
et al., 2002; Wood, 2002). The earliest fossil in Europe, which belongs to the
genus Homo, was found in Spain and has been dated to 1.1e1.2 million
years ago, which suggests that the first settlement of Western Europe was
related to demographic expansion out of Africa (Carbonell et al., 2008).
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In 8000 BC, at the dawn of agriculture, the world’s population was
5 million (Wilford, 1982). At the birth of Christ in 1 A.D., it was
200 million. In 1000, the population was 250 million (National
Geographic, 1998a) (Figure 1.1). By 1300, it had grown larger (Wilford,
1982). But by 1400, the population had dropped dramatically due to the
Black Death, also called the bubonic plague (McEvedy, 1988), which is
caused by a bacillus spread by fleas on rats. The Black Death raged in
Europe between 1347 and 1351 and killed at least half of its population. It
caused the depopulation or total disappearance of about 1000 villages.
Starting in coastal areas, where rats were on ships, and spreading inland,
it was the greatest disaster in western European history (Renouard, 1971).
People fled to the country to avoid the rampant spread of the disease in
cities. The great piece of literature, The Decameron, published in Italian in
1353 and written by Giovanni Boccaccio (1313e1375), tells of 10 people
who in 1348 went to a castle outside of Florence, Italy, to escape the pla-
gue. To pass time, they each told a tale a day for 10 days (Bernardo, 1982).

By 1500, the world’s population was about 250,000,000 again. In 1650, it
was 470,000,000; in 1750, it was 694,000,000; and in 1850, it was
1,091,000,000. At the beginning of the nuclear age in 1945, it was
2.3 billion. In 1950, it was 2,501,000,000; in 1970, 3,677,837,000; and in 1980,
FIGURE 1.1 The human population growth curve. Drawn by author from data found in

literature.
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4,469,934,000. In 1985, it was 4.9 billion and in 1987 it was 5.0 billion (New
York Times, 1987). In 1999, the world’s population reached 6 billion
(National Geographic, 1999). On October 31, 2011, the United Nations
Population Fund estimated that the seventh billion person was born in the
world (McGurn, 2011).

Note that it took more than six million years for humans to reach the
first billion; 120 years to reach the second billion; 32 years to reach the
third billion; and 15 years to reach the fourth billion (New York Times,
1980). It took 12 years to add the fifth to sixth billion (1987e1999), and 12
years to add the next billion (sixth to seventh billion; 1999e2011). The
population is projected to reach 9.3 billion by 2050 (Chin et al., 2011). If
fertility rates drop until women have about two children each, the pop-
ulation will stabilize at 10.8 billion (National Geographic, 1998b).

The population may also fall due to plagues (Weiss, 2002), such as the
one that devastated Europe in the fourteenth century. Current potential
plagues may result from acquired immune deficiency syndrome, thought
to be caused by a virus; influenza, another viral infectiondfor example,
there may be a recurrence of the 1918 pandemic (Gladwell, 1997); sudden
acute respiratory syndrome, a deadly infectious disease caused by a
coronavirus (Lemonick and Park, 2003); hospital infections, which cannot
be treated with any known antibiotics; and mad-cow disease, which is
formally called bovine spongiform encephalopathy (BSE). BSE is called
Creutzfeldt-Jakob (also spelled as Creutzfeldt-Jacob) disease, when it
occurs in humans (Hueston and Voss, 2000). It is thought to be caused by
prions, which were discovered by Stanley Prusiner (born in 1942), director
of the Institute for Neurodegenerative Diseases at the University of
California, San Francisco (the discovery won Prusiner both the Wolf Prize
(1996) and the Nobel Prize (1997) in medicine). Prions are a new class of
protein, which, in an altered state, can be pathogenic and cause important
neurodegenerative diseases by inducing changes in protein structure.
Prions are designed to protect the brain from the oxidizing properties of
chemicals activated by dangerous agents such as ultraviolet light.

1.1.2 The “Two-Square-Yard Rule”

The population is limited by the productivity of the land. There is a
space limitation that our population is up against. Many of us already
have heard of this limitation, which is a space of two square yards per
person. The sun’s energy that falls on two square yards is the minimum
required to provide enough energy for a human being’s daily ration.
Ultimately, our food and our life come from the sun’s energy. The falling
of the sun’s energy on soil and plants is basic. We want to make as many
plants grow on those two square yards per person as possible, to make
sure we have enough to eat.
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Let us do a simple calculation to determine how much food can be
produced from two square yards, using the following steps:

1. Two square yards is 3 ft by 6 ft or 91 cm by 183 cm.

91 cm� 183 cm ¼ 16; 653 cm2 or; rounding; 16; 700 cm2:

2. The solar constant is 2.00 cal/cm2/min, or, because one
langley¼ 1 cal/cm2, it is 2.00 langleys/min. The langley is named
after Samuel Pierpoint Langley (1834e1906), who was a US
astronomer and physicist who studied the sun. He was a pioneer in
aviation.
The solar constant is defined as the rate at which energy is received
upon a unit surface, perpendicular to the sun’s direction in free
space at the earth’s mean distance from the sun (latitude is not
important) (Johnson, 1954). The brightness of the sun varies during
the 11-year solar cycle, but typically by less than 0.1% (Lockwood
et al., 1992).

3. 16,700 cm2� 2.00 cal/cm2/min¼ 33,400 cal/min.
4. 33,400 cal/min� 60 min/h� 12 h/day¼ 24,048,000 cal/day, or,

rounding, 24,000,000 cal/day. We multiply by 12 h/day, because we
assume that the sun shines 12 h/day. Of course, the length the sun
shines each day depends on the day of the year, cloudiness, and
location.

5. There is 6% conversion of absorbed solar energy into chemical
energy in plants (Kok, 1967). This 6% is for the best crop yields
achieved; 20% (Kok, 1967) to 30% (Kok, 1976) conversion is thought
possible, but it has not been achieved; 2% is the conversion for
normal yields; and under natural conditions, �1% is converted
(Kok, 1976). The solar energy reaching the earth’s surface that plants
do not capture to support life is wasted as heat (Kok, 1976). Let us
assume a 6% conversion:

24; 000; 000 cal=day� 0:06 ¼ 1; 440; 000 cal=day:

6. The food “calories” we see listed in calorie charts are in kilocalories.
So, dividing 1,440,000 cal/day by 1000, we get 1440 kcal/day, which
is not very much.

We recognize that the earlier calculation of productivity from two
square yards is simplified, and more complex and thorough calculations
of productivity, which consider geographic location, sky conditions, leaf
display, and other factors, have been carried out (e.g., De Wit, 1967).
Nevertheless, the 1400 kcal/day is a useful number to know. It would be a
starvation diet. One could live on it, but the calories probably would not
provide enough for active physical work, creative intellectual activity,
and reproduction. Women below a minimum weight cannot reproduce
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(Frisch, 1988). Civilization would advance slowly with this daily ration.
People begin to die of starvation when they lose roughly a third of their
normal body weight. When the loss reaches 40%, death is almost
inevitable.

Triage is a system developed during World War I. It is the medical
practice of dividing the wounded into survival categories to concentrate
medical resources on those who could truly benefit from them and to
ignore those who would die, even with treatment, or survive even
without it. This practice has been advocated to allocate scarce food sup-
plies. If we can grow more food, then this system does not need to be put
into effect. In this book, we seek a better understanding of movement of
water through the soileplanteatmosphere continuum, or SPAC (Philip,
1966), because of the prime importance of water in plant growth.

We focus on principles rather than review the literature. Many refer-
ences are given, but no attempt is made to cite the most recent papers.
Articles explaining the principles are cited. They often are in the older
literature, but we need to know them to learn the principles. No knowl-
edge of calculus is required to understand the equations presented.

In this book, we divide the movement of water through the SPAC into
three parts: (1) water movement in the soil and to the plant root; (2) water
movement through the plant, from the root to the stem to the leaf; and (3)
water movement from the plant into the atmosphere. We then combine all
parts when we look at electrical analogues for water movement through
the soileplanteatmosphere continuum (Chapter 22). However, before we
turn to principles of water movement in the SPAC, let us first consider
plant growth curves.
1.2 PLANT GROWTH CURVES

1.2.1 The Importance of Measuring Plant Growth and
Exponential Growth

The world population growth curve (Figure 1.1) is an exponential
curve. What do plant growth curves look like? Because water is the most
important soil physical factor affecting plant growth, it is important to
quantify plant growth to determine effects of water stress. In any exper-
iment dealing with plantewater relations, some measure of plant growth
(e.g., height, leaf area, biomass) should be obtained. Plant growth curves
also exemplify quantitative relationships that we seek to understand basic
principles of plantewater relations. If we can develop equations to show
relationships, then we can predict what is going to happen. Equations
describing plantegrowth curves demonstrate how we can quantify, and
thus predict, plant growth.
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We first consider the growth of the bacterium Escherichia coli. In the
early nineteenth century, when plants and animals were being classified,
the bacteria were arbitrarily included in the plant kingdom, and botanists
first studied them (Stanier et al., 1963; pp. 55e56). Even though bacteria
are not plants or animals, we can follow their growth to understand plant
growth curves.

Under ideal conditions, a cell of E. coli divides into two cells approxi-
mately every 20 min; for the sake of simplicity we assume that it is exactly
20 min. Let us consider the propagation of a single cell. Our purpose is to
find a relation between the number N of cells at some moment in the
future and the time t that has elapsed. At the start of our observations, at
the time 0 min, there is one cell. When 20 min have elapsed there are two
cells. When 40 min have elapsed there are 2� 2¼ 22 cells. When 60 min
have elapsed there are 2� 22¼ 23 cells; that is, when three time intervals
of 20 min each have passed, there are 23 cells. We observe a pattern
developing: whenm time intervals each of 20 min have passed, at the time
t¼ 20mmin, there are 2m¼ 2t/20 cells. Thus, if N denotes the number of
cells present at the moment when t minutes have elapsed, then the rela-
tion we seek is given by the equation

N ¼ 2t=20: (1.1)

Because the time t appears in the exponent of the expression 2t/20, this
equation is said to describe exponential growth of the numberN of cells (De
Sapio, 1978, pp. 21e23).

A famous book called On Growth and Form by D’Arcy Wentworth
Thompson contains the following statement (Thompson, 1959; vol. 1, p.
144): “Linnaeus shewed that an annual plant would have a million
offspring in twenty years, if only two seeds grew up tomaturity in a year.”
Linnaeus is, of course, Carolus Linnaeus (born Karl von Linné)
(1707e1778), the great Swedish botanist. We can show that what Linnaeus
said is true by adapting the preceding equation, as follows:

X ¼ 220; (1.2)

where X is the number of offspring from the plant in 20 years.
To solve this equation, we need to use logarithms. John Napier

(1550e1617), a distinguished Scottish mathematician, was the inventor of
logarithms. (See the Appendix, Section 1.3, for his biography.) To solve
equations using logarithms, we need to know the fundamental laws of
logarithms, which are as follows (Ayres, 1958, p. 83):

1. The logarithmof the product of two ormorepositive numbers is equal
to the sum of the logarithms of the several numbers. For example,

logbðP$Q$RÞ ¼ logbPþ logbQþ logbR (1.3)
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2. The logarithm of the quotient of two positive numbers is equal to the
logarithm of the dividend minus the logarithm of the divisor. For
example,

logbðP=QÞ ¼ logbP� logbQ (1.4)

3. The logarithm of a power of a positive number is equal to the
logarithm of the number, multiplied by the exponent of the power.
For example,

logbðPnÞ ¼ n logbP (1.5)

4. The logarithm of a root of a positive number is equal to the logarithm
of the number, divided by the index of the root. For example,

logbP
ð1=nÞ ¼ ð1=nÞ logbP: (1.6)

In calculus, the most useful system of logarithms is the natural system in
which the base is a certain irrational number e¼ 2.71828, approximately
(Ayres, 1958, p. 86). The natural logarithm of N, ln N, and the common
logarithm of N, log N, are related by the formula

ln N ¼ 2:3026 log N: (1.7)

To solve our equation, we take the logarithm of each side:

log
�
220

� ¼ log X

Using logarithm Rule No. 3, we get

20 log 2 ¼ log X

Solving (and reading out all the digits on our hand calculator):

log X ¼ 20ð0:30103Þ ¼ 6:0205999
X ¼ 1; 048; 576:

Linnaeus was right.
1.2.2 Sigmoid Growth Curve

The S-shaped, or sigmoid, curve is typical of the growth pattern of
individual organs, or a whole plant, and of populations of plants
(Figure 1.2). It can be shown to consist of at least five distinct phases: (1)
an initial lag period during which internal changes occur that are pre-
paratory to growth; (2) a phase of ever-increasing rate of growth;
(because the logarithm of growth rate, when plotted against time, gives a
straight line during this period, this phase is frequently referred to as the
log period of growth or “the grand period of growth”); (3) a phase in



FIGURE 1.2 Five phases in the
sigmoid growth curve. From Mitchell

(1970, p. 95). Reprinted by permission of

Roger L. Mitchell.
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which growth rate gradually diminishes; and (4) a point at which the
organism reaches maturity and growth ceases. If the curve is prolonged
further, a time will arrive when (5) senescence and death of the organism
set in, giving rise to another component of the growth curve (Mitchell,
1970, p. 95).
1.2.3 Blackman Growth Curve

Since about 1900, people have used growth curves to analyze growth.
Significant relationships of a mathematical nature, however, are difficult
to apply to such a complex thing as growth (Hammond and Kirkham,
1949). One well-known theory of plant growth is the compound interest
law of Blackman (1919). He related plant growth to money in a bank.
When money accumulates at compound interest, the final amount
reached depends on:

1. The capital originally used;
2. The rate of interest; and
3. The time during which the money accumulates.

Comparing these factors to plants
1¼ the weight of the seed;
2¼ the rate at which the seed material is used to produce newmaterial;
3¼ the time during which the plant increases in weight.
Blackman related the three factors into one exponential equation,

W1 ¼ W0e
rt; (1.8)

where

W1¼ the final weight
W0¼ the initial weight
r¼ the rate of interest
t¼ time
e¼ the base of natural logarithms (2.718.).
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The Blackman equation works best for early phases of growth (the log
phase of growth in the sigmoid growth curve). In the later growth stages,
the decreasing relative growth rate has appeared to make impossible the
application of this theory to the entire growth curve. Blackman attempted
to do this, nevertheless, by using the average of all the different relative
growth rate values as the r term in Eqn (1.8). He called this term the
“efficiency index” of plant growth.

Hammond and Kirkham found that the growth curves (dry weight
versus time) of soybeans [Glycine max (L.) Merr.] and corn (Zea mays L.)
were characterized by a series of exponential segments, which were
related to the growth stages of the plants. The exponential equation for all
segments had the form:

w ¼ woe
rðt�toÞ; (1.9)

where

w¼weight of the plant at time t
wo¼weight of the plant at an arbitrary time to
r¼ relative growth rate
e¼ base of natural logarithms (2.718.).

Taking the natural logarithm of each side, we get

ln w ¼ ln wo þ ln erðt�toÞ

ln wo þ ½rðt� toÞx 1�
ln wo þ rðt� toÞ:

Converting to common logarithms by dividing each term by 2.303, we
get

log w ¼ log wo þ ½rðt� toÞ�=2:303:
Now let

y ¼ log w

a ¼ log wo

b ¼ r=2:303

x ¼ t� to:

We get y¼ aþ bx, which is the equation of a straight line.
The differential form of Eqn (1.9), w ¼ woe

rðt�toÞ; is

dw=ðwdtÞ ¼ r (1.10)

where r, the relative growth rate, is the increase in weight per unit weight
per unit time. It is obtained bymultiplying the slope, b, of the line by 2.303.
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Hammond and Kirkham (1949) plotted the common logarithm of dry
weight versus time and found that soybeans have three growth stages, I,
II, and III. The analysis showed that the plants produce dry matter at the
greatest relative rate during period I; at a smaller rate during period II;
and at a still smaller rate during period III. That is, the slopes declined
with age (slope¼ r/2.303). They saw that the dates of change in the
growth curves from period I to period II were also the dates when the
plants began to bloom. The dates of the second change in the growth
curve, or the change from period II to period III, were the dates when the
plants reached maximum height. The soybeans grew on two different
soils, Clarion loam and Webster silt loam. The soybean plants in the
Clarion soil bloomed and reached maximum height about a week earlier
than the soybeans on the Webster silt loam soil. The growth curves clearly
showed this difference (Figure 1.3). Growth curves, therefore, can be used
to see the effect of the soil environment on plant growth. Hammond and
Kirkham (1949) did not give a reason for the difference in rate of growth
on the Webster and Clarion soils, but it probably was related to one of the
four soil physical factors that affect plant growth: water, temperature,
aeration, or mechanical impedance. For corn, they found four periods of
growth (Figure 1.4). The additional period in corn apparently was related
to the difference in time of appearance of male and female flowers in corn.
The physiological changes associated with the breaks in the curves were
connected with tasseling, silking, and cessation of vegetative growth. The
last break occurred after the corn plants had reached maximum height. In
sum, the data for soybeans and corn showed that a quantitative analysis
FIGURE 1.3 Logarithmic dry mat-
ter accumulation curves of soybeans
grown in the field in Iowa on Webster
and Clarion soils. From Hammond and

Kirkham (1949). American Society of

Agronomy, Madison, Wisconsin. Reprin-

ted by permission of the American Society
of Agronomy.



FIGURE 1.4 Logarithmic dry mat-
ter accumulation curves of Iowa 939
corn in 1938 and 1939. From Hammond

and Kirkham (1949). American Society

of Agronomy, Madison, Wisconsin.
Reprinted by permission of the American

Society of Agronomy.
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of the complete growth curve can be accomplished if the overall growth is
partitioned into segments based on the growth stages of the plants.

The equations for plant growth show that we can develop significant
mathematical relationships for a quantitative analysis of plant growth.
This is probably because plant growth is governed by basic chemical and
physical laws. From these relationships, we can predict plant growth.
1.3 APPENDIX: BIOGRAPHY OF JOHN NAPIER

John Napier (1550e1617), a distinguished Scottish mathematician, was
the inventor of logarithms. The son of Scottish nobility, Napier’s life was
spent amid bitter religious dissensions. He was a passionate Protestant.
His great work, A Plaine Discouery of the Whole Reuelation of Saint John
(1594), has a prominent place in Scottish ecclesiastical history as the
earliest Scottish work on the interpretation of the scriptures. He then
occupied himself by inventing instruments of war, including two kinds of
burning mirrors, a piece of artillery, and a metal chariot fromwhich a shot
could be discharged through small holes. Napier devoted most of his
leisure to the study of mathematics, particularly to developingmethods of
facilitating computation. His name is associated with his greatest method,
logarithms. His contributions to this mathematical invention are
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contained in two treatises: Mirifici logarithmorum canonis descriptio (1614;
translated into English in 1857) and Mirifici logarithmorum canonis con-
structio, which was published two years after his death (1619) and
translated into English in 1889. Although Napier’s invention of loga-
rithms overshadows all his other mathematical work, he has other
mathematical contributions to his credit. In 1617, he published his Rab-
dologiae, seu numerationis per virgulas libri duo (English translation, 1667). In
this work, he describes ingenious methods of performing the funda-
mental operations of multiplication and division with small rods (Nap-
ier’s bones). He also made important contributions to spherical
trigonometry (Scott, 1971).
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