CHAPTER

[}

Water Movement
in Saturated Soil

Understanding movement of water in saturated soil is important in
drainage and groundwater studies. The French hydraulic engineer, Henry
Darcy (1803—1858) experimentally determined the law that governs the
flow of water through saturated soil (1856), which is called Darcy’s law.
(See the Appendix, Section 7.7, for a biography of Darcy.)

7.1 DARCY’S LAW

To illustrate Darcy’s law, let us consider Figure 7.1, which shows water
flowing through a soil column of length L and cross-sectional area,
A (Kirkham and Powers, 1972, p. 47). The law can be stated as follows:

Q= —KA(hy —)/(z2 — z1), (7.1)

where Q is the quantity of water per second such as in cubic centimeters
per second, often called the “flux”; K, centimeters per second, is the

FIGURE 7.1 Tlustration of
Darcy’s law. From Kirkham and
Powers (1972), p. 47, ©1972. This ma-
terial is used by permission of John
Wiley & Sons, Inc. and William
L. Powers.
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“hydraulic conductivity” (the law defines K); heads h; and h; and dis-
tances z; and z; are as shown in Figure 7.1. The reference level here is the
x, y plane. The head 5, is the hydraulic head for all points at the bottom of
the soil column, that is, at z = z;, and similarly, the head h, applies to all
points at the top of the soil column, z = z,. The length of the column is
zp — z1 = L. The negative sign in the Darcy equation is used so that a
positive value of Q will indicate a flow in the positive z direction. The
positive z direction is measured from z; to zp (Kirkham and Powers, 1972,
pp- 46—47).

In the Darcy law equation, the quantity (i, — h1)/(z2 — z1) is called the
“hydraulic gradient” #; the ratio Q/A is called the “flux per unit cross-
section” or “flux density” (cubic centimeters per second) divided by
centimeters squared. The ratio Q/A is also called the “Darcy velocity” v
or, very often, just the velocity v. Therefore, Darcy’s law may be written as
v = —Ki. The “actual velocity” of the water in the soil is much greater than
the Darcy velocity. The actual velocity is on the average v/f where f is the
“porosity” (Kirkham and Powers, 1972, p. 47). The porosity is the volume
of pores in a soil sample divided by the bulk volume of the sample (Soil
Science Society of America, 2008). The pores can be filled with air or water.
(Because Darcy’s law is for saturated soil, the pores are filled with water
when it applies). The percent porosity in the soil can be determined from
the following equation (Millar et al., 1965, p. 54):

% porosity = [1 — (bulk density/particle density)] x 100. (7.2)

The Darcy velocity v means more than flux per unit area, Q/A. In
Figure 7.1, suppose that the supply of water shown dripping into the soil
column is abruptly cut off during a short time interval At during which
hy decreases by Ah. Let Ag be the volume of water flowing downward
through the soil in At. Because Q is the flow per second, we may write Ag
as Ag = QAt, and we also have by continuity of flow Ag=AAh. There-
fore, QAt =AAh, and Q/A = Ah/At. Physically, Ah/At is a velocity;
therefore, so is v =Q/A. Thus, the Darcy velocity v represents the rate
Ah/At approaches dh/dt of fall of surface water in Figure 7.1. If the
hydraulic gradient is unity (pressure potential is the same at the top and
bottom of the soil column), then v = —K. Thus, it is determined that K is
numerically equal to the rate of fall of a thin layer of ponded water into
the soil, under only the force of the earth’s gravitational pull. We also see
that K is the velocity under a unit hydraulic gradient (Kirkham and
Powers, 1972, p. 48).

Flow in a vertical soil column has been used to derive and illustrate
Darcy’s law. However, the law and principles developed in the preceding
paragraphs apply for the flow of water in any direction in the soil.

For a discussion of the use of Darcy’s law in groundwater hydrology,
see Anderson (2007).
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7.2 HYDRAULIC CONDUCTIVITY

The hydraulic conductivity should not be confused with the “intrinsic
permeability”, sometimes just called the “permeability”, of the flow me-
dium. The intrinsic permeability, symbolized by k by M. Muskat (1946) in
his classic treatise (Muskat was a petroleum engineer in the United States
well known for his studies in the 1930s and 1940s of fluid flow through
porous media), is equal to Kn/pg, where K is the Darcy hydraulic con-
ductivity, n is the fluid viscosity, p is the fluid density, and g is the ac-
celeration due to gravity. Dimensionally, k is an area (L?). The units of K
are meters per day, which is the same as (cubic meters per square meter)/
day. That is, K may be interpreted as the cubic meter of water seeping
through a square meter of soil per day under a unit hydraulic gradient
(Kirkham and Powers, 1972, pp. 48—49).

Hydraulic conductivity in natural field soil is governed by factors such
as cracks, root holes, worm holes, and stability of soil crumbs. Texture,
that is, the percent of the primary particles of sand, silt, and clay, usually
has a minor effect on hydraulic conductivity, except for disturbed soil
materials. The hydraulic conductivity of natural soils in place varies from
about 30 m/day for a silty clay loam to 0.05 m/day for a clay (Kirkham,
1961a, p. 46; Kirkham, 1961b). The hydraulic conductivity for disturbed
soil materials varies from about 600 m/day for gravel to 0.02 m/day for
silt and clay. The value of K can be made higher or lower by soil man-
agement. Roots of crops after decay increase K; compaction of soil by
animals or machinery decreases K, at least in the surface soil.

Ordinarily one considers K in v = —Ki to be a constant under saturated
flow. It is a constant if (1) the physical condition of the soil and of the
water does not change in space or time as the water moves through the
soil (e.g., the soil is “isotropic”, i.e., hydraulic conductivity is the same
regardless of the direction of measurement) and if (2) the type of flow is
laminar, that is, not turbulent. In laminar flow, two particles of water
seeping through the soil will describe paths (streamlines) that never cross
each other. In turbulent flow, eddies and whirls develop. The possibility of
turbulent flow is considered in soil only if the soil is a coarse sand or
gravel, and then only if the hydraulic gradients are large (larger than
those found in most problems of interest to agricultural soil scientists).

7.3 LAPLACE’S EQUATION

To solve groundwater seepage and drainage problems, it is desirable
to have a general differential equation (Kirkham and Powers, 1972,
p- 49), and Laplace’s equation, which is a familiar equation occurring in
nearly all branches of applied mathematics, applies. Laplace’s equation
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is derived from Darcy’s law and the equation of continuity. (See the ap-
pendix of Chapter 6 for a biography of Laplace.) The equation of con-
tinuity states mathematically that mass can neither be created nor
destroyed. We can state the equation of continuity in words, as follows:
For a volume element x times y times z, the change in the velocity of
water in the x direction plus a change in velocity of water in the y di-
rection plus a change in the velocity of water in the z direction are equal
to the total change in water content, §, per unit time of the volume
element under consideration. That is, the inflow of water in the element
minus outflow of water is equal to the water accumulated. Let us ima-
gine a rectangular x, y, z system of coordinates that is established in a
homogeneous porous medium of constant hydraulic conductivity, and
let 1 be the hydraulic head referred to an arbitrary reference level for a
point (x, y, z) and let time be t and vy, v,, and v, be the velocity of water
flowing in the x, y, and z directions, respectively; then, with 6 being the
volume of water per unit volume of bulk soil, from the equation of
continuity,

—[(80x/3x) + (80, /3y) + (302/9)] = 36/t (7.3)

and from Darcy’s law, one may, for an incompressible steady-state flow in
a porous medium where K is constant, derive the expression (Kirkham
and Powers, 1972, p. 52)

(0%h/9x*) + (8*h/dy?) + (6%h/9z*) =0, (7.4)

as the expression governing groundwater flow. The equation is abbrevi-
ated V2h = 0.

Charles S. Slichter (1899), a mathematician at the University of
Wisconsin, was the first to show in 1899 that Laplace’s equation applies
to the motion of groundwater (Kirkham and Powers, 1972, p. 52).
Many mathematical solutions for groundwater flow using Laplace’s
equation have been done by Don Kirkham (1908—1998) of Iowa State
University.

7.4 ELLIPSE EQUATION

In addition to Darcy’s equation and Laplace’s equation, another
important equation for saturated flow is called the Colding equation after
the Danish engineer A. Colding, who published it in 1872 (van der Ploeg
et al., 1997). It is used to determine drain spacings. The equation is also
called the ellipse equation, because it describes an ellipse. Therefore,
before we look at the Colding equation, let us study an ellipse.

The locus of a point P that moves in a plane so that the sum of its
distances from two fixed points in the plane is constant is called an
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FIGURE 7.2 The ellipse. It is the locus of a point P that moves in a plane so that the sum
of its distances from two fixed points in the plane, F and F/, is constant. From Ayers (1958),
p. 322, ©1958. This material is reproduced with permission of The McGraw-Hill Companies.

“ellipse” (Ayers, 1958, p. 322). The fixed points F and F’ are called the
“foci”, and their midpoint C is called the “center” of the ellipse
(Figure 7.2). The line FF’ joining the foci intersects the ellipse in the points
Vand V/, called the “vertices”. The segment V'V intercepted on the line FF/
by the ellipse is called its “major axis”; the segment B'B intercepted on the
line through C perpendicular to F'F is called its “minor axis”.

A line segment in which the extremities are any two points on the
ellipse is called a “chord”. A chord that passes through a focus is called
a “focal chord”; a focal chord perpendicular to the major axis is called a
“latus rectum”.

The equation of an ellipse assumes its simplest (“reduced”) form when
its center is at the origin and its major axis lies along one of the coordinate
axes. When the center is at the origin and the major axis lies along the
x-axis, the equation of the ellipse is (Figure 7.3)

(x*/a®) + (y*/1?) = 1. (7.5)

Figure 7.3 is an oblate ellipse. “Oblate” comes from the Latin “oblatus”,
which means “offered” or “thrust forward”, and means “being thrust
forward at the equator”. In geometry, oblate means flattened at the poles.

When the center is at the origin and the major axis lies along the y-axis,
the equation of the ellipse is (Figure 7.4)

(x*/6%) + (v /a®) = 1. (7.6)

Figure 7.4 is a prolate ellipse. “Prolate” comes from the Latin “prola-

tus”, which is the past participle of “proferre”, “to bring forward”. Prolate
means “extended or elongated at the poles”.
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FIGURE 7.3 An oblate ellipse. From Ayers (1958), p. 323, ©1958. This material reproduced
with permission of The McGraw-Hill Companies.

A circle is a special form of an ellipse in which the semimajor and
semiminor axes are equal in length. The equation of a circle is

2yt =7, 77)

where 7 is the radius of the circle, and the circle has its center at the origin
of the x, y coordinate system.

If we are dealing in three dimensions, we have an “ellipsoid”. The
locus of the equation

2+ P+ 22 =1 (7.8)

is called an ellipsoid (Figure 7.5). If at least two of 4, b, ¢ are equal, the locus
is called an ellipsoid of revolution, and if 2 =b =, the locus is a sphere
(Ayers, 1958, p. 387).
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FIGURE 7.4 A prolate ellipse. From Ayers (1958), p. 323, ©1958. This material reproduced
with permission of The McGraw-Hill Companies.
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FIGURE 7.5 The ellipsoid. From Ayers (1958), p. 387, ©1958. This material is reproduced with
permission of The McGraw-Hill Companies.

The need for soil drainage is widespread around the world, not only in
the wet soils of northern Europe and in the states of the United States that
are wet in the spring (e.g.,, lowa) but also in irrigated regions. It is
generally accepted that the Danish engineer Colding was the first to
derive a drain-spacing equation based on modern soil—water flow con-
cepts. For parallel, equally spaced tile (tube) drains resting on an imper-
meable barrier, and for steady-state flow conditions, Colding (1872)
derived the following expression (van der Ploeg et al., 1997, 1999):

L? = [(4K)/R]p?, (7.9)

where L is the drain distance, K is the soil hydraulic conductivity, R is the
constant rate of precipitation, and b is the maximum height of the water
table above the drain level, midway between the drains (Figure 7.6).
Equation (7.9) describes an ellipse, with the drain distance L being the

Pt

Soil surface

Water table K

b Tile
* drain

Impervious barrier

le——— | —————————

FIGURE 7.6 Schematic representation of the subsurface drain problem, as considered by
Colding. From van der Ploeg et al. (1999), ©1999, Madison, Wisconsin. Reprinted by permission of
the Soil Science Society of America.
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major axis and the maximum water table height b above the drain level
being the semiminor axis (Kirkham and Powers, 1972, pp. 90, 92).

It is not known if Colding was familiar with the work of Darcy (1856),
but apparently he was not, because he does not mention him in his work.
Darcy’s work on hydraulic conductivity did not receive much attention
until the second edition of the book by Dupuit (1863), and even then it
took time for people to become familiar with it. Nevertheless, Colding
was using Darcy-like theory to derive his equation.

The US Bureau of Reclamation uses the Colding equation, as modified
by Hooghoudt (1940) for design purposes (van der Ploeg et al., 1999).
Instead of equally spaced tile drains, (Hooghoudt 1937, 1940) considered
equally spaced drainage ditches overlying an impervious layer
(Figure 7.7). (For a biography of Hooghoudt, see Raats and van der Ploeg,
2005.) In the Imperial Valley in California, the Colding equation, as
modified by Aronovici and Donnan (1946) is used (van der Ploeg et al.,
1999). Aronovici and Donnan, apparently unaware of the work of
Hooghoudyt, also developed a modified Colding equation almost identical
to the Hooghoudt (1940) equation. It is important to recognize that some
of today’s most common drainage design practices are based on the
Colding (ellipse) equation.

The ellipse is an important geometric form because of its widespread
application in soil—water relations and other aspects of nature. Apollo-
nian curves—that is, ellipses, parabolas, and hyperbolas—all have
amazing relationships hidden in them (Anvar Kacimov, personal
communication, December 9, 1999). (See the Appendix, Section 7.6, for a
biography of Apollonius, a Greek geometer.) Johannes Kepler
(1571-1639, German astronomer and mathematician) also came to his
celestial mechanics formula from the geometric side. (See the appendix of
Chapter 30 for a biography of Kepler.) He first selected an ellipse and then
applied it to orbits (Goodstein and Goodstein, 1996). To understand the

R FIGURE 7.7 Geometric represen-
l l l l ¢ ¢ tation of a homogeneous soil, under-
lain by an impervious barrier, which
Soil surface is drained by parallel, equally spaced
ditches, where the ditches reach the
Water table K impervious barrier, as considered by
= <d Hooghoudt. From van der Ploeg et al.
h \ (1999), Madison, Wisconsin. Reprinted
3 Y S 5 — by permission of the Soil Science Society
D i - of America.
[]
/)
Impervious barrier
- L -
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interception of solar radiation by plant leaves, which we discuss in
Chapter 30, we need to study Kepler’s laws of planetary motion. He saw
that the planets orbit the sun in elliptical paths.

Other examples of Apollonian curves used in soil-water studies
include the work by Kacimov (2000), who used the special case of an
ellipsoid, the hemisphere, to study three-dimensional groundwater flow
to a lake, and the work by Kirkham and Clothier (1994), who used the
ellipsoidal equation (Eqn (7.8)) to describe the shape of the wet front as it
expands under a surface disc that is infiltrating water into the soil.

7.5 LINEAR FLOW LAWS

Darcy’s law is a linear flow law. It is linear because the v, the Darcy
velocity, of v = —Ki, varies linearly with the hydraulic gradient i (Kirkham
and Powers, 1972, p. 74). Ohm’s law is one of the most common linear
flow laws and is used in problems concerning the flow of electricity. In
Ohm'’s law, the current transported is linearly related to the difference in
the driving potential across the system. We shall return to Ohm’s law
when we study electrical analogues (Chapter 22). Gauss’s law, used in
studying electrostatic fields, is another linear flow law (Kirkham, 1961a,
p- 104). Poiseuille’s law for flow of a liquid through a capillary tube is not
a linear flow law, because an exponent >1 occurs in it. Poiseuille found
that the volume of fluid moving in unit time along a cylinder is propor-
tional to the fourth power of its radius. We will use Poiseuille’s law to
study flow of water in the vessel members in the xylem tissue (Chapter 15).

Table 7.1 shows that linear flow laws are similar. For example, Darcy’s
law is similar to Ohm’s law, Fick’s law, and Fourier’s law. These laws are
commonly used in soil physics; Darcy’s law is used in studies of water
flow, Fick’s law in studies of gaseous flow (Kirkham, 1994), and Fourier’s
law in studies of heat flow. It is important to know the similarities,
because, for water flow (Darcy’s law) problems for which solutions are
desired, there may exist analogous electrical flow (Ohm’s law) or heat
flow (Fourier’s law) problems that have been already solved. These so-
lutions can be used for writing down directly the solution of the desired
water flow problem (Kirkham, 1961a, p. 104).

Linear flow phenomena are involved in other studies, as well, as listed
by Moon and Spencer (1961):

1. High-voltage engineering: Design of high-tension transformer
bushings, transmission-line insulators, electrostatic voltmeters,
and Van de Graaf generators

2. Magnetostatics: Calculations for generators, motors, lifting magnets,
solenoids, synchrotrons



TABLE 7.1 Linear Flow Laws Encountered in Soil—Plant—Water Relationships. No Exponents (Other Than 1) Appear in a Linear

Flow Law

Linear Flow Laws

Quantity Transported
per sec Across Flow

Transport Coefficient

Difference in Driving
Potential Across

Form Factor F
for System (e.g.,

Law Region of Flow Region System Rectangular Box)!
Ohm I= Amperes or g = Specific electrical AV = Difference in Fo A
I gAVA V' coulombs per sec conductivity (S/cm) electrical potential L
- L R between input and
output (V)
A
Darcy Q=cm®/sec k =Hydraulic Ah = Difference in head F= T
0= kARA conductivity (cm/sec) of water column
L between input and
output (cm)
Fick Q=g/sec D = Diffusion AC = Difference in F= %
0- DACA coefficient (cm?/sec) concentration of gas at
T L input and output
(g/cm?)
A
Fourier Q =cal/sec K = Thermal AT = Difference in F= T
0= KATA conductivity (cal per temperature between
L sec per cm” for a input and output (°C)

thickness of 1 cm and
temperature difference
of 1°C)

A = Cross-sectional area of the system (box) perpendicular to the direction of flow; L = length of the system (box) through which the flow occurs. The form factor is for two-dimensional

flow problems; it is the same for equal geometries of the flow region.
'R in this equation = resistance in ohms, Q. (1S = 1/Q = mho).
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3. Heat conduction: Determination of temperature distributions in
electric machinery, heating devices, cable ducts, and refrigerators

4. Fluid flow: Calculation of flow about airfoils and other obstructions,
seepage of fluids through sand

5. Electrodynamics: Determination of resistance of irregular-shaped
conductors, electrical prospecting

6. Electrostatics: Design of vacuum tubes, electron microscopes, and
cathode ray oscilloscopes, television tubes

7. Elasticity: Vibration engineering, structural engineering

8. Diffusion: Calculation of the heating and cooling of ingots, the
annealing of glass, and the diffusion of fluids

9. Acoustic waves: Design of loud speakers and microphones

10. Electromagnetic waves: Calculation of wave guides and antennas

To the list of Moon and Spencer (1961) can be added an 11th item:

11. Mass flow of gas under a small pressure gradient

7.6 APPENDIX: BIOGRAPHY OF APOLLONIUS
OF PERGA

Apollonius of Perga (Pergaeus), a Greek geometer of the Alexandrian
school, was probably born about 25 years later than Archimedes (i.e.,
~261 BC). He flourished in the reigns of Ptolemy Euergetes and Ptolemy
Philopator (247—205 BC) (Heath and Neugebauer, 1971). His treatise on
Conics gained him the title of the Great Geometer, and, through this work,
his fame has been transmitted to modern times. Most of his other treatises
were lost, although their titles and a general indication of their contents
were passed on by later writers, especially Pappus. After Apollonius
wrote the Conics in eight books in a first edition, he brought out a second
edition, considerably revised with regard to books I and II.

The degree of originality of the Conics can best be judged from Apol-
lonius’s own prefaces. He made the fullest use of his predecessors” works,
such as Euclid’s four books on conics, which is clear from his allusions to
Euclid, Conon, and Nicoteles. Books I-IV form an “elementary intro-
duction” (i.e., contain the essential principles) and the rest of the books are
specialized investigations. Apollonius introduced the names “parabola”,
“ellipse”, and “hyperbola”. Books V—VII are highly original. Apollonius’s
genius takes its highest form in book V, where he treats normals as
minimum and maximum straight lines drawn from given points to the
curve (independently of tangent properties), discusses how many nor-
mals can be drawn from particular points, finds their feet by construction,
and gives propositions determining the center of curvature at any point
(Heath and Neugebauer, 1971).
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Six other treatises by Apollonius (each in two books) were concerned
with cutting off a ratio, cutting off an area, determinate sections, tan-
gencies, inclinations, and plane loci. An Arabic version of the first treatise
was found toward the end of the seventeenth century in the Bodleian
library by Edward Bernard, who began a translation of it. (The Bodleian
library is a famous library at Oxford University in England named after
Sir Thomas Bodley, 1545—1613, an English diplomat and man of letters
and founder of the library.) Edmund Halley (1656—1742), the English
astronomer, finished the translation and published it with a restoration of
the second treatise (1706).

Other works by Apollonius referred to by ancient writers include (1)
On the Burning-Mirror, where the focal properties of the parabola probably
were discussed; (2) On the Cylindrical Helix; (3) a comparison of the do-
decahedron and the icosahedron inscribed in the same sphere; (4) a work
which included Apollonius’s criticisms and suggestions for the
improvement of Euclid’s Elements; (5) a work in which he showed how to
find closer limits for the value of 7 than the 3%~ and 310/, of Archimedes;
(6) an arithmetic work on a system of expressing large numbers and
showing how to multiply such large numbers; and (7) extensions of the
theory of irrationals expounded in Euclid.

7.7 APPENDIX: BIOGRAPHY OF HENRY DARCY

Henry Philibert Gaspard Darcy (1803—1858) is best known for his
scientific work on pipe flow (Howland, 1971). He lived in Dijon, France,
for most of his life, where he was inspector general of bridges and
highways. His father, a town functionary, died when he was 14 years old
(Philip, 1995). His determined mother named him the English “Henry”
instead of the French “Henri”, and ensured that both Henry and his
brother Hugues received the best education possible. Henry won a
scholarship to the Dijon Polytechnic and in 1826 graduated brilliantly as a
civil engineer. He married Henriette Carey in 1828, but they never had
any children (Ik-Jae Kim, Graduate Student, Department of Biological and
Agricultural Engineering, Kansas State University, personal communi-
cation, September 15, 2004).

Working as an engineer, he devoted his life to providing the town of
Dijon with pure water. The waters of cities then, including Dijon, were
often inadequate, always in short supply, and dirty. Dijon had at its
disposition only wells plus the water of the Ouche, and well waters
were not protected from contamination. The town of Dijon was crossed
by the ancient bed of a small stream, the Suzon, which was uncovered
over almost all its length, with no part paved, and served over a length
of 1300 m as the main sewer for wastes of every kind. It was never
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cleaned, and during hot weather, the town was poisoned by pestilential
odors.

To clean up the water, Darcy substituted the method that became
standard (Philip, 1995). In 1833, Darcy, on his own initiative, presented his
plan to the municipal authorities. The Municipal Council adopted his
recommendations, and the General Council of Bridges and Highways
(Ponts et Chaussées) approved all parts of the proposed plan. He devel-
oped a network of underground conduits with underground reservoirs.
On September 6, 1840, without any errors or mishaps, the beneficial wa-
ters reached the reservoir of the Porte Guillaume. By 1844, the whole
network of underground conduits had been completed (Philip, 1995).
Consequently, Dijon possessed from 1840 the benefits that Paris did not
discover until 20 years later, and enjoyed an abundance of water. Other
towns asked for Darcy’s assistance, such as Brussels, which officially
asked for his help in 1851 and 1852 and adopted the plan that he provided.

Darcy had given his native town the better part of his life. For this work
of 12—15 years, he wished to receive no remuneration. He would not
agree even to be reimbursed for his expenses. He accepted only a gold
medal that commemorated his work.

In 1848, the revolution overthrew King Louis-Philippe and brought in
the radical and short-lived Second Republic. Despite the facts that Darcy
was apolitical and that he had given generously of his own money to set
up workers’ cooperatives, the Second Republic saw him as a dangerous
and reactionary collaborator with the ancient regime. Darcy was stripped
of his offices and banished from Dijon. In 1852, the Second Republic was
succeeded by the Second Empire of Emperor Napoleon III, and Darcy was
politically rehabilitated.

In 1854, Darcy was 51, but in poor health. Ever since his days as a
young engineer, he had been a prey to nervous troubles and to attacks
producing symptoms of meningitis. Time and overwork gradually made
these attacks more acute. He suffered a bad period in 1845, while he was
directing the works at Blaisy. Later, in Paris, he lost consciousness during
a conference, and in 1853, he fell down in the open street. He took leave
for several months, but, as he continued to suffer intolerably, he despaired
and asked to be released from his responsibilities. Nevertheless, unable to
stay inactive, he pursued his hydraulic experiments, and it was during
these last years that he was able, thanks to financial help from the Min-
istry of Public Works, to carry out the work that he wrote up and pub-
lished in 1856.

In 1857, the Académie des Sciences wished to elect him to the vacancy
left by the mathematician Cauchy who had just died. (Baron Augustin
Louis Cauchy, 1789—1857, was one of the greatest of modern French
mathematicians.) Darcy was elected without discussion, but on January 2,
1858, he succumbed to pleurisy aggravated by angina and died in Paris.
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Dijon gave him a public funeral appropriate to his great labors. The whole
population went to receive his remains at the railway station, all the
functionaries in uniform, armed soldiers lining the streets, the workers of
cooperatives founded on his initiative carrying the coffin, and the bishop
officiating. Sadly, 135 years after Darcy’s death, when the whole town
mourned it, nobody in Dijon knew who he was, even though his name
appears in many places in Dijon (Philip, 1995).

There is in existence a collection of letters from Darcy to Henri Emile
Bazin (1829—1917). Bazin was 26 years younger than Darcy, a hydraulic
engineer working in Dijon whose researches on channel and pipe flow
are well known. Bazin, acting as Darcy’s assistant, was trained to be a
careful and assiduous experimenter. He carried on Darcy’s original
program of tests on open-channel resistance. His studies also extended
to wave propagation, to flow over weirs, and to the contraction of the
liquid vein coming from an orifice. Bazin was elected to the French
Academy of Sciences in 1865. He died on February 7, 1917, at Dijon
(Howland, 1971).
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