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[1] We studied 34 global reservoirs for which good quality surface elevation data could be
obtained from a combination of five satellite altimeters for the period from 1992 to 2010.
For each of these reservoirs, we used an unsupervised classification approach using the
Moderate Resolution Imaging Spectroradiometer (MODIS) 16-day 250 m vegetation
product to estimate the surface water areas over the MODIS period of record (2000 to 2010).
We then derived elevation-area relationships for each of the reservoirs by combining the
MODIS-based estimates with satellite altimeter-based estimates of reservoir water
elevations. Through a combination of direct observations of elevation and surface area
along with documented reservoir configurations at capacity, we estimated storage
time histories for each reservoir from 1992 to 2010. We evaluated these satellite-based
data products in comparison with gauge observations for the five largest reservoirs in the
United States (Lakes Mead, Powell, Sakakawea, Oahe, and Fort Peck Reservoir).
The storage estimates were highly correlated with observations (R = 0.92 to 0.99), with
values for the normalized root mean square error (NRMSE) ranging from 3% to 15%.
The storage mean absolute error (expressed as a percentage of reservoir capacity) for
the reservoirs in this study was 4%. The multidecadal reconstructed reservoir storage
variations are in accordance with known droughts and high flow periods on each of the
five continents represented in the data set.
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1. Introduction

[2] Reservoirs are key tools for the management of water
resources. They provide a means for reducing the effects of
interseasonal and interannual streamflow fluctuations and
hence facilitating water supply, flood control, hydroelectric
power generation, recreation, and other water uses. Nilsson
et al. [2005] found that over half of the world’s large river
systems are currently impacted by dams. Since the era of
large dam construction began about a century ago, the
sequestration of water in reservoirs may have reduced sea
level rise by as much as 30 mm, with a rate of more than
0.5 mm y�1 near the middle of twentieth century [Chao et al.,
2008; Lettenmaier and Milly, 2009]. A total of more than
33,000 large dams are included in the World Register of
Dams, with a total storage capacity of about 8300 km3 in
2000 [Chao et al., 2008; International Commission on Large

Dams, 2007]. In contrast to the comprehensive documenta-
tion of the dams and their configurations, consistent obser-
vations of reservoir storage are limited mostly to developed
countries, and even there the records are often difficult to
access. This unbalanced spatial distribution of observational
data makes it challenging to assess the effects of human
alterations to the land hydrologic cycle, which are not well
represented in current earth system models.
[3] Modeling approaches have been used to simulate res-

ervoir storage in lieu of direct observations. On continental
and global scales, most studies have focused on reservoir
impacts on downstream river discharge [Döll et al., 2009;
Haddeland et al., 2006; Hanasaki et al., 2006]. Unfortu-
nately, the calibrations and validations of these models are
mostly limited to North America, where gauge observations
are relative easy to access. For the rest of the world, espe-
cially the less populated and underdeveloped regions, there
are large, unresolved disparities among these modeling
results. For example, Biemans et al. [2011] found that the
estimates for irrigation water demand around the year 2000
ranged from 1900 km3 y�1 to 3800 km3 y�1 [Döll and Siebert,
2002; Rost et al., 2008, and references therein; Vörösmarty
et al., 2005; Wisser et al., 2008]. Consequently, results from
global reservoir simulations are questionable in terms of their
utility for quantitative analysis and decision making in those
regions where there are no direct observations of reservoir
storage.
[4] Beginning about 2 decades ago, satellite remote sensing

began to show promise for estimating water storage in large
reservoirs and lakes. This breakthrough is attributable to the
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advent of satellite radar altimetry [Berry et al., 2005; Birkett,
1994, 1995], the primary purpose of which is to obtain esti-
mates of ocean surface topography (notwithstanding that
some satellite altimeters have secondary purposes such as ice
sheet and sea ice mapping). Despite issues with spatial reso-
lution, related both to the relatively long along-track path
length required to obtain accurate vertical measurements
(typically 10 km or so), and coarse across-track spacing
(order of hundreds of kilometers), satellite altimetry is con-
sidered the best method for measuring water elevation var-
iations from space [Alsdorf et al., 2007; Tang et al., 2009].
The most commonly used spaceborne radar altimeters are
GEOSAT (1986–1988), Topex/Poseidon (T/P) (1992–2002),
ERS-1 (1991–1996), ERS-2 (1995–2003), GFO (2000–2008),
ENVISAT (post-2002), JASON-1 (post 2002), and JASON-2
(post 2008). Typical radar altimetry vertical precision is sev-
eral tens of centimeters. For very large lakes with no interfer-
ence of the radar echo from land (e.g., the Great Lakes) the
satellite measurement error can be as small as a few cen-
timeters. Smaller lakes, large lakes with interference of the
radar echo from land, or lakes with low surface roughness
(calm conditions) will all have larger errors. Although surface
water elevations from altimetry are available for both lakes and
reservoirs [Alsdorf et al., 2001; Berry et al., 2005; Birkett,
1994; Crétaux et al., 2011], most applications to date have
focused on lakes [Birkett, 2000; Aladin et al., 2005; Crétaux
et al., 2005; Mercier et al., 2002; Xu et al., 2006].
[5] To estimate water storage (and storage variation) in

lakes and reservoirs, measurements of both surface water
area and bathymetry are needed. Surface water extent can be
measured from optical sensors, such as Landsat and the
Moderate-Resolution Imaging Spectroradiometer (MODIS),
as well as from Synthetic Aperture Radar (SAR) sensors,
such as RADARSAT, JERS-1, and ERS. The primary
advantage of Landsat is its high resolution (30 m), but it has
low repeat frequency and is susceptible to cloud cover con-
tamination. For sensors with daily coverage, like MODIS,
the frequency of observations is obviously an advantage, but
the resolution is relatively coarse (250 m to 500 m at the
visible and near infrared bands). Although a static global
water mask has been produced using MODIS and Shuttle
Radar Topography Mission (SRTM) observations at 250 m
resolution [Carroll et al., 2009], dynamic water classifica-
tion estimates have been limited to case studies [e.g., Islam
et al., 2010; Wang et al., 2008]. A common practice for
MODIS-based water classification is to place some thresh-
olds on selected vegetation indexes for decision making, but
the thresholds are often empirical and vary case by case.
Multitemporal interferometric SAR imagery can be used to
delineate surface water. This approach is based on the
assumption that the repeat-pass coherence over water is much
smaller (because the scattering characteristics of water sur-
faces continually change with waves) than the coherence
over the surrounding land (the land surface characteristics
remain static in the interferometric pairs which are 1 day
apart) [Smith and Alsdorf, 1998]. However, such a condition
is not met in most circumstances by SARs with more than a
few day repeat cycles since snow, rain, and wind between
acquisitions can alter dielectric properties of the surrounding
area and result in poor coherence everywhere in the imagery
[Alsdorf et al., 2007].
[6] Notwithstanding the possibility of monitoring both

elevation and surface area of reservoirs and lakes from

space, most satellite-based methods combine them with in
situ observations [Sawunyama et al., 2006; Xu et al., 2006].
This is a major obstacle for studies in data sparse regions.
Crétaux et al. [2011] were the first to monitor storage var-
iations of lakes using satellite data exclusively. For estima-
tion of lake surface area, they used different sources of
satellite imagery, such as Landsat, MODIS, ASAR (from the
Envisat satellite), and others. Perhaps because of the large
diversity of sensor frequencies, spatial resolutions, and
repeat cycles, detailed description of the water classification
algorithms utilized for the lake surface area estimation and
the errors in the estimates were not provided, nor were the
surface area and storage variations compared with surface
observations.
[7] This study has two objectives: (1) to create time his-

tories of reservoir storage for selected large reservoirs glob-
ally using only remote sensing observations, with reservoir
surface area as a by-product; and (2) to analyze the errors in
the products using in situ observations where available.

2. Data and Methodology

[8] We describe in this section the remote sensing data
sources and the methods we use to estimate reservoir water
levels, surface areas, and storages.

2.1. Reservoir Water Level From Radar Altimetry

[9] Satellite radar altimetry was designed primarily to
measure water levels over the open ocean. Although many
factors (such as the narrow swath, low spatial resolution,
small footprint size, and complex terrain around some inland
water bodies) eliminate the possibility for monitoring most
small water bodies with current satellite sensors, altimetry
has demonstrated great potential for hydrological studies
for some large inland water bodies globally. Surface ele-
vation data sets for large lakes and reservoirs globally are
available from the U.S. Department of Agriculture’s (USDA)
Global Reservoir and Lake Elevation Database (http://www.
pecad.fas.usda.gov/cropexplorer/global_reservoir/); the French
Space Agency Centre National d’Etudes Spatiales’ (CNES)
Hydrology by Altimetry (http://www.legos.obs-mip.fr/soa/
hydrologie/hydroweb/); and the European Space Agency’s
(ESA) River and Lake data set (http://tethys.eaprs.cse.dmu.
ac.uk/RiverLake/shared/main). At the time of this research
(2010), the USDA and CNES databases provided 20 and 36
reservoir data products, respectively. The ESA data set pri-
marily focuses on rivers and lakes (with a few reservoirs
which are also included in the other two data sets).
[10] In addition to the reservoirs included in these existing

data sets, we retrieved water elevation levels for another
20 reservoirs from Topex/Poseidon (T/P) for the period 1992
to 2002 (hereafter referred to as University of Washington
(UW)). These reservoirs were identified by overlaying the
T/P orbits onto the reservoir maps from the Global Lakes
and Wetland Database (GLWD) [Lehner and Döll, 2004].
The data processing procedures were similar to those used
to produce the USDA data product, which closely follow
methods developed by the NASA Ocean Altimeter Path-
finder Project [Chelton et al., 1988; McKellip et al., 2004;
Ross, 2006; Birkett and Beckley, 2010]. These three data
sources (USDA, CNES, and UW) together provide 62 res-
ervoir water level time series (after eliminating duplicates).
From the combined data set, we chose 34 reservoirs as the
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focus for this study. The selection criteria were (1) the ele-
vation time series had to cover at least 2 years after 2000
(when the MODIS data became available) so that a water
level-surface area relationship could be established; (2) the
remotely sensed reservoir levels had to show plausible sea-
sonal variations based on a visual screening; (3) the reservoir
water body had to be distinct from other nearby water bod-
ies. Figure 1 shows the locations of the selected reservoirs.

2.2. Reservoir Surface Area From MODIS

[11] The MODIS/Terra 16-day L3 global vegetation indi-
ces at 250 m (MOD13Q1) from the NASA Land Processes
Distributed Active Archive Center (http://lpdaac.usgs.gov/)
were used to estimate reservoir surface area from 2000 to
2010. This choice was made on the basis of three factors:
First, MODIS observed vegetation indices have been used
previously to detect flood inundation [Islam et al., 2010;
Ordoyne and Friedl, 2008; Yan et al., 2010]. Second, the
250 m resolution is the highest available from MODIS,
which helps in representing the irregular shapes of many
reservoirs. Third, the 16-day temporal resolution is close to
the repeat cycle of most of the satellite altimeters and suffers
much less from cloud contamination as compared to daily or
8-day products.
[12] A common practice for water classification using

MODIS vegetation indices is to apply case-dependent
thresholds in the decision trees [Islam et al., 2010; Xiao
et al., 2006; Yan et al., 2010]. Since the reservoirs in this
study are located in different climate zones and are sur-
rounded by different land cover types, we chose the non-
parametric unsupervised K-means clustering classification
approach [Anderberg, 1973; MacQueen, 1967]. To reduce
the computational cost and increase the classification accu-
racy, the clustering was conducted only over each reservoir
and a surrounding area.We use Fort Peck Reservoir (Montana,

USA) as an example to illustrate the method used for area
estimation.
[13] First, a uniform threshold of 0.1 was applied to the

entire set of available normalized difference vegetation index
(NDVI) images (250 images in total from 2000 to 2010) to
produce an initial set of surface water estimates. Although
the fixed 0.1 threshold is not precise, it does allow the shape
of the reservoir polygons to be reasonably well estimated.
The result of this process for each NDVI image was an
image with three classes: water, land, and invalid. The
invalid class represents the pixels that were defined as
“unreliable” in the quality control (QC) file (e.g., covered by
snow/ice or cloud). For each pixel within the domain for a
given reservoir, the frequency (in terms of the percentage of
the cell classified as water for the entire period) was calcu-
lated. A mask, within which the classifications were to be
conducted, was then derived based on this frequency map.
The masked area contains two types of pixels. The first
type included all the cells that had a value larger than 10%
(considered “water”) in the frequency map (with a total area
of 946 km2 as compared to 996 km2 at capacity). This pro-
cess constituted a first pass. A second pass expanded the
mask to include a ring area, which covered any “nonwater”
area that fell within a 21 � 21 (cell) moving box centered
on each water cell (from the first pass). With an area of
3327 km2, the resulting mask was large enough that it
included the reservoir regardless of its level. Figure 2 shows
the delineated mask with the percentiles for the water class
depicted.
[14] Next, a water classification was performed using the

K-means clustering algorithm to extract the water area from
the masked portion of each of the 250 NDVI images for the
2000–2010 period. The use of the mask serves two purposes:
first, it reduces computational cost; second, it enhances
classification accuracy by focusing on the reservoir and its
surrounding area. Like many other unsupervised classification

Figure 1. Locations of the study reservoirs.
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approaches, K-means clustering is an iterative procedure.
The objective is to minimize the variability within the
cluster. The objective function (which is to be minimized) is
the sum of squares of the distances (errors) between each
pixel and its assigned cluster center [Bobrowski and Bezdek,
1991; Selim and Ismail, 1984]. Only the reliable NDVI grid
cells (free of snow/ice/cloud contamination) within the
masked area were used in the clustering. For each classified
image, if the number of pixels with bad data quality
(according the QC file) was more than 5% of the total number
of pixels in the masked domain, we considered the result to
be not usable. For those classified images with good data
coverage, a majority filter (a simple post classification pro-
cedure which replaces cells in a raster based on the majority
of their contiguous neighboring cells) was applied to the
classified image to reduce the high spatial frequency noise
(“salt and pepper” effect). Figure 3 shows two examples of
the water classification results for Fort Peck reservoir, one for
a high water elevation and the other for a low water elevation.
Because the MOD13Q1 data use a sinusoidal projection,

which is a pseudocylindrical equal-area map projection,
each grid cell has a constant area of 62,500 m2. For each
classified image, reservoir surface area was estimated as the
total area of the water cells. As an example, the time series of
surface area for Fort Peck Reservoir is shown in Figure 4.

2.3. Estimation of Reservoir Storage

[15] The water elevations and surface areas (during any
overlapping period(s) from 2000 to 2010) for each of the
reservoirs were used to derive the elevation-area relation-
ships. These elevation-area relationships were then used to
estimate reservoir storage time series. Figure 5 shows results
for Fort Peck Reservoir. A linear regression was used to
approximate the relationship between surface elevation (h)
and surface area (A), A = f(h). For the period when MODIS
data were unavailable (1992 to 2000), this relationship was
applied to estimate the reservoir surface area from the water
elevation. Similarly, during periods when altimetry data
were unavailable during the MODIS era, the water elevation
was estimated as an inverse function of the surface area

Figure 3. Examples of the water classification results for Fort Peck Reservoir, wet scenario (2000, day 177)
and dry scenario (2005, day 177), showing (top) the NDVI images and (bottom) classification results.

Figure 2. Delineated mask for Fort Peck Reservoir (with percentiles for water class).
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function (h = f�1(A)). Equation (1) was used to estimate
reservoir storage, where Vc, Ac, and hc represent storage,
area, and water elevation at capacity, and Vo, Ao, and ho are
the observed storage, area, and water elevation, respectively.
The values at capacity were taken mostly from the Global
Reservoir and Dam (GRanD) database [Lehner et al., 2011].
GRanD is based on multiple sources, including a variety of
regional and national inventories and gazetteers, Interna-
tional Commission on Large Dam’s World Register of Dams
(www.icold-cigb.net), as well as a variety of publications,
monographs, and maps. By substituting the elevation-area
relationship into equation (1), the storage equation can be
simplified into a single variable function, either as a function
of water elevation from altimetry (referred as altimetry-
estimated storage hereafter) or as a function of surface
area from MODIS (referred as MODIS-estimated storage
hereafter).

Vo ¼ Vc � Ac þ Aoð Þ hc � hoð Þ=2: ð1Þ

[16] Figure 6 shows the estimated storage time series for
Fort Peck Reservoir. The MODIS-estimated storage shows a
seasonal variation that is not consistent with the altimetry-
estimated storage. This seasonality associated with the
MODIS-estimated results is caused by subgrid spatial het-
erogeneity associated with pixels along the reservoir shores.
Fort Peck Reservoir is a sinuous water body that is 216 km
long at capacity. As a result, many of the MODIS 250 m �
250 m grid cells over the reservoir are border cells, partially
covered by water and partially covered by land. For these
pixels on the border, the effective NDVI is a weighted
function of NDVI values for the water portion and the land
portion. When seasonal variations of NDVI for the land
portion are large, the effective NDVI for the mixed pixel will
have a distinct seasonality even when the water portion
has a fixed area. Consequently, the K-mean clustering (which
minimizes the variability within the cluster) tends to over-
estimate the water area when the NDVI for the land is similar
to that for the water. Likewise, the clustering underestimates
the water area when the NDVI for the land is very different
from that for the water. To remove the false seasonality, we

used a moving average of the MODIS-estimated storages.
The modified MODIS results agree quite well with the
altimeter-estimated storages. For the overlapping period
when both the altimeter-estimated and MODIS-estimated
storage were available, the former was used in the final
product. Because the storage estimates for 1992 to 2000 were
exclusively based on altimetry, the altimeter-estimated stor-
age was used for the post-2000 period (if available) to max-
imize the consistency within the time series. The only
exception was when MODIS surface area data were available
but the altimetry product was not, in which case the water
elevation was inferred from MODIS to maximize the length
of the storage record. We made this choice because the water
elevations were generally more accurate than the surface
areas (see sections 3 and 4). For a very few cases where the
MODIS-estimated storage had larger seasonal variations than

Figure 4. Time series of MODIS-estimated surface area for Fort Peck Reservoir.

Figure 5. Water surface elevation surface area relationship
for Fort Peck Reservoir.
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the altimeter-estimated storage, the area based storage was
smoothed using moving averages to make the results
coherent.

3. Results

3.1. Evaluation for U.S. Reservoirs

[17] We performed error analyses on the satellite-based
estimates using in situ observations for five large U.S.
reservoirs (Lakes Mead, Powell, Sakakawea, Oahe, and Fort

Peck Reservoir). Monthly observed reservoir elevations and
storage were obtained from the U.S. Army Corps of Engi-
neers and the U.S. Bureau of Reclamation. Elevation-volume
relationships (V = g(h)) were derived for each reservoir from
the observations. The reservoir area for each observed ele-
vation was then estimated by taking the derivative of the
volume, i.e., A ¼ dV

dh ¼ g′ hð Þ. Figure 7 shows the evaluation
results. The quantitative accuracy of reservoir elevation, area,
and storage estimates were assessed using the correlation

Figure 6. Time series of reservoir storage estimated from remote sensing for Fort Peck Reservoir.

Figure 7. Evaluations of the water surface elevation, surface area, and storage from remote sensing com-
pared with gauge observations for five U.S. reservoirs, with observations in black, altimetry-based esti-
mates in red, and MODIS-based estimates in green.
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coefficient (R), mean bias (defined as bias = RS � Obs ,
where RS and Obs are mean remote sensing and observation
based estimates), and normalized root-mean square error

(NRMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑i¼n

i¼1

RSi � Obsið Þ2
n

s

Obs
� 100%, where RSi and

Obsi denote remote sensing and observation based monthly
estimates, and n is the number of pairs in the analysis).
Table 1 summarizes the results of the error analysis. All of
the satellite-estimated reservoir terms (water elevation, sur-
face area, and storage) are highly correlated with observa-
tions (0.92 to 0.99), although these high correlations are
attributable in part to common seasonal cycles in the esti-
mates and observations. While the altimetry-estimated water
elevation tends to have relatively small biases for all five
reservoirs, the MODIS-estimated surface areas over the three
Missouri Basin reservoirs tend to be biased upward espe-
cially during dry years. This likely occurs because these three
reservoirs all have a combination of very long shorelines,
large surface areas, and shallow depths. For the same storage
change values, the variations of the Missouri Basin reservoirs
areas are about triple those of the Colorado reservoirs. When
the water elevations in these reservoirs decline, water retreats
along the shoreline quickly. This shrinking in size leaves
disconnected ponds, which are speckle-like in the classified
images. When these dense speckles are further smoothed out
using the majority filter, the water area is overestimated.
Among the three Missouri reservoirs, Lake Oahe has the
largest shoreline-to-sqrt(area) ratio (94, 48, and 37 for Oahe,
Fort Peck, and Sakakawea respectively), which leads to some
degree of overestimation even when the reservoir is relatively
full. As a result, the elevation is biased high when it is
inferred from the MODIS area. The error is further com-
pounded in the storage results when only MODIS observa-
tions are available.

3.2. Global Data Set

[18] As described in section 2, after the elevation-surface
area relationships for each of the 34 reservoirs were devel-
oped, they were used to estimate time series of reservoir
storage. The reservoir storage results are shown in Figure 8
and the elevation-area relationships are summarized in
Table 2. The total capacity of the 34 reservoirs is 1164 km3,
which represents about 15% of global reservoir capacity.
For 16 of these reservoirs, the estimated storage is available
for 19 years (1992–2010). The average record length for all
reservoirs is 14.5 years. The correlation coefficient between
the water elevation and surface area varies from 0.08 to
0.98, with an average value of 0.5. A high correlation

usually indicates good quality for both data sets, while a
low correlation can result from many conditions. These
include errors from either the water elevation or surface
area (or both) and/or the possibility that within the range of
variation the bathymetry is independent of area (i.e., vertical
walls). For consistency within the time series for each res-
ervoir, the MODIS-estimated surface areas were used to
maximize the record length (when altimetry water elevation
was unavailable) only if the correlation coefficient between
altimetry water elevation and MODIS surface area excee-
ded 0.5. We further discuss how these factors influence
the correlations and ultimately the estimated storages in
section 4. The elevation-area relationship is also used to
derive two companion products: the inferred surface area and
inferred water elevations where direct observations were
unavailable.
[19] We selected a few reservoirs from each continent to

explore the hydrological implications of this global data set.
Lake Tharthar, the largest lake in Iraq, is the first example.
Its primary purpose is irrigation. During our study period,
there were two severe droughts in the Fertile Crescent, one
from 1998 to 2001 and the other from 2008 to 2010 [Trigo
et al., 2010]. Both wheat and barley production dropped
precipitously during these drought events. The remotely
sensed reservoir storage for Lake Tharthar indicates that the
lowest storage during these events is about 35% of the peak
value in 1993. Lake Qadisiyah, a much smaller reservoir
(also built for irrigation) close to Lake Tharthar, was hit
relatively harder by the droughts; reservoir storage was
completely depleted by the end of 2009 for a short period.
Knowledge of water availability in water-sparse regions
like this is crucial for managing irrigation water use and for
planning aid.
[20] In Asia, we examined the time history of storage in

Toktogul Reservoir. It supplies water to Kyrgyzstan’s single
largest hydropower plant, and it also provides irrigation
water downstream. During the 2007–2008 drought, the res-
ervoir storage was completely depleted. Storage information
for the Toktogul Reservoir is also crucial for water man-
agement in the Naryn/Syr Darya basin, which is a major
international river system in Central Asia [Siegfried and
Bernauer, 2007].
[21] With a storage capacity of 157 km3, Lake Nasser in

Africa is the third largest man-made reservoir in the world
by volume. Its main use is for irrigation, with hydropower
and flood control as secondary operation purposes. During
the 1990s the water elevation and storage increased due to
high precipitation in the Ethiopian Highlands. For the safety
of the dam, water was spilled from Lake Nasser westward
into the Sahara Desert, forming the Toshka Lakes

Table 1. Summary of Comparisons Between Remotely Sensed Reservoir Data and Observations for Five U.S. Reservoirsa

Fort Peck Reservoir Lake Oahe Lake Sakakawea Lake Mead Lake Powell

R elevation 0.97 0.94 0.99 0.99 0.98
area 0.97 0.94 0.99 0.99 0.98

storage 0.97 0.92 0.99 0.99 0.99
Bias elevation (m) �1.08 1.57 0.28 �0.10 0.53

area (km2) 67 137 187 6 29
storage (km3) 0.63 2.87 0.53 �0.23 �0.21

NRMSE elevation (%) 10 17 5 4 5
area (%) 10 15 18 3 7

storage (%) 8 15 7 3 3

aReservoir data include elevations, areas, and storages.
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(beginning in 1998). From 2003 to 2007, these discharges to
the Toshka Lakes were stopped, and the new lakes con-
tracted [Abdelsalam et al., 2008]. Our storage history for
Lake Nasser shows that the rebound of storage in 2008–
2009 should have allowed more spillover to the Sahara,
suggesting possible increases in irrigation diversions or
releases to the Nile Delta.
[22] Guri Dam in South America is the world’s third

largest hydropower plant. It supplies 73% of Venezuela’s
electricity. Two major drought events (2001 to 2004 and
2009 to 2010) were the worst in the past 40 years in
Venezuela, and the reservoir dropped to a low storage of
28% of its maximum in 2003. During the 2010 event, power
rationing was implemented to close the electricity gap. Our
reservoir time series shows that reservoir storage experienced
a quick recovery from the last drought by the end of 2010.
[23] In section 3.1, we evaluated the results for five U.S.

reservoirs. Although each of these five reservoirs was
affected by at least one drought during our analysis period,
recovery times varied substantially as a combination of
natural variation in the runoff combined with operational
considerations. Among the three Missouri reservoirs, Fort
Peck Reservoir (which is upstream of the other two) was
the last reservoir to recover from the drought. Mostly this
had to do with natural variations in runoff. From 2008 to
2010, Lake Sakakawae and Lake Oahe recovered signifi-
cantly faster because a fairly large Northern Great Plains
snowpack contributed to above normal runoff. However,
the snowpack in the area above Fort Peck was not as big a
contributing factor. With respect to the two Colorado reser-
voirs, Lake Powell started to recover in 2006 while Lake
Mead was still deeply stressed at the end of 2010. This is
because evaporation is higher in Lake Mead, which results in
Lake Powell filling first during the recovery of the system.

4. Discussion

4.1. Error Sources and Description of Uncertainties

[24] Errors in estimated reservoir storage are attributable
to the following: (1) altimetry water surface elevation error,
(2) MODIS surface area error, (3) elevation-area relationship
error, and (4) errors in the reported reservoir configurations.
We examine each of these below.
4.1.1. Altimetry Water Surface Elevation Error
[25] The accuracy of the altimetry product is dominated

by knowledge of the satellite orbit, the altimetric range
(distance between antenna and target), the geophysical range
corrections, and the target size and the tracks’ location rel-
ative to the edge of the target. Satellite passes that cross over
narrow reservoir extents in severe terrain will push the limits
of the instruments, resulting in large errors. Major wind
events, heavy precipitation, tidal effects, and the presence of
ice also affect data quality and accuracy. Because each record
in the reservoir’s water elevation time series was calculated
by averaging across the satellite ground track, this average
has an associated standard error. A large standard error
implies higher uncertainty for the elevation estimates. The
uncertainty could be both from measurement errors and natu-
ral variations (including surface roughness and surface wind).
4.1.2. MODIS Surface Area Error
[26] Fractional water coverage for the MODIS pixels at

the reservoir borders introduces error during the unsuper-
vised classification (see section 2.2). An unrealistic seasonal

Figure 8. Global reservoir storage time series from remote
sensing.
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variation may be introduced for the cases when the reservoir
has a large shoreline to area ratio. Although the majority filter
(see section 2.2) improves the classification by eliminating
high-frequency noise, it tends to overestimate water area for
reservoirs with a complicated shoreline and shallow mean
water depth (particular when the reservoir storage is low).
We use the area from the unsupervised classification (before
filtering) as the minimum area, and the filtered result as the
maximum area, to create a bracket for each record.
4.1.3. Water Surface Elevation-Area Relationship
Error
[27] The accuracy of the elevation-area relationship

depends on the quality of both variables. When one variable
is systematically biased (e.g., surface area for Lake Oahe),
the water surface elevation-area relationship error will be
carried to the estimated storage. Although a good correlation
between elevation and area generally indicates reliable stor-
age estimation, a small correlation coefficient may also arise
when the reservoir has nearly constant area (vertical walls,
in which case the area does not vary much with the changing
elevation). The approximation of reservoir bathymetry
using a linear elevation-area relationship (except for Lake
Qadisiyah) may introduce some error but in most cases
does not appear to be a major contributor to the error (see
section 3.1).

4.1.4. Errors in the Reported Reservoir Configurations
[28] According to equation (1), the estimated storage will

be biased if the characteristics at capacity (storage, area, and
elevation) are not accurate. Even when correctly docu-
mented, the storage capacity might have changed due to
sedimentation over time. Nonetheless, the storage variation is
free of this potential error source, since it is solely a function
of remote sensing based elevation and area at different time
steps (the constants at capacity will be canceled out when
storage change is calculated).
[29] To represent the uncertainties, equation (1) was

modified with the terms for errors represented explicitly (in
equation (2)). When the storage estimation was based on
surface elevation (h), Ao and DAo were substituted by f (ho)
and Dho.f ′(ho), respectively. Equation (3) shows the storage
error as a function of surface level and its error. When the
storage estimation was based on surface area (A), ho andDho
were substituted by f�1(Ao) and DAo.f ′( f

�1(Ao)), respec-
tively. Equation (4) shows the storage error as a function of
surface area and its error.

Vo þDVo ¼ Vc � Ac þ Ao þDAoð Þ hc � ho �Dhoð Þ=2 ð2Þ

DVo ¼ Dho Ac þ f hoð Þð Þ=2þ hof hoð Þ=2�Dhof
′ hoð Þ hc � hoð Þ=2

þ Dhoð Þ2f ′ hoð Þ=2 ð3Þ

Table 2. Water Elevation-Area Relationship, Correlations, and Mean Absolute Errors

Reservoir
Dam Location

(lat, lon)
Capacity
(km3)

Period of
Estimated
Storage Level-Area Relationship

Correlation
Coefficient

Mean
Absolute
Error (%)

Kremenchutska 49.08, 33.25 13.52 1992�2010 y = �1536.9 + 45.972x 0.23 8
Mossoul 36.63, 42.82 12.5 1992�2010 y = �918.56 + 3.7919x 0.7 5
Qadisiyah 34.21, 42.36 8.3 2000�2010 y = �21246 + 499.78x � 3.97x2 + 0.0107x3 0.98 2
Rybinskoye 58.08, 38.75 25.4 1992�2010 y = 3226.3 + 13.198x 0.09 7
Karakaya 38.23, 39.14 9.58 1992�2010 y = �2944 + 4.6032x 0.78 2
Tharthar 33.79, 43.58 85.59 1992�2010 y = 1444.6 + 19.447x 0.39 1
Tshchikskoye 44.99, 39.12 3.1 2000�2010 y = �89.297 + 13.882x 0.7 12
Tsimlyanskoye 47.61, 42.11 23.7 1992�2010 y = �3914.5 + 181.39x 0.42 8
Aydarkul 40.95, 66.5 44.3 2002�2010 y = �48738 + 210.28x 0.41 1
Chardarya 41, 68 6.7 1992�2010 y = �8828.6 + 37.392x 0.96 5
Krasnoyarskoye 55.5, 92 73.3 1992�2010 y = �5.7725 + 8.171x 0.25 1
Novosibirskoye 54.5, 82 9.08 1992�2004 y = 857.13 + 2.0431x 0.16 5
Toktogul 41.78, 72.83 19.5 2002�2010 y = 151.03 + 0.1471x 0.14 2
Vilyuyskoye 62.73 111.16 35.9 1992�2002 y = �2121.1 + 19.197x 0.08 5
Zeyskoye 54, 128 68.4 1992�2010 y = �1026.7 + 10.141x 0.38 2
Buyo 6, �7 8.3 2002�2010 y = 47.495 + 2.2899x 0.13 1
Kainji 10.4, 4.55 15 1992�2010 y = �4985.4 + 45.047x 0.97 10
Nasser 23.97, 32.88 162 1992�2010 y = �28160 + 185.02x 0.79 1
Roseires 11.6, 34.38 3 2000�2010 y = �3215.4 + 7.0832x 0.68 9
Churumuco 18.265, �101.89 12 2000�2010 y = �624.09 + 6.9943x 0.68 5
Flathead 47.67, �114.23 23.2 2002�2010 y = �1799 + 2.7029x 0.32 1
Fort Peck 48, �106.42 23.05 1992�2010 y = �14860 + 23.19x 0.76 3
Sakakawea 47.5, �101.42 29.38 1992�2010 y = �14439 + 28.339x 0.72 3
Mead 36.01, �114.74 31.92 2000�2010 y = �2491 + 8.4546x 0.83 6
Oahe 44.45, �100.39 28.54 2000�2010 y = �11798 + 26.661x 0.83 13
Powell 36.94, �114.48 30 1992�2010 y = �8654 + 8.2567x 0.66 2
Williston 56.01, �122.2 74 1992�2010 y = 1108.4 + 0.9685x 0.11 3
Guri 7.76, �63 135 1992�2010 y = �354.07 + 16.948x 0.4 2
Sobradino �10, �42 34.1 2000�2010 y = �48382 + 131.55x 0.81 4
Itaparica �9, �39 10.8 2000�2010 y = �11074 + 39.052x 0.8 1
Tres Marias �18, �45.5 21 2002�2010 y = 357.44 + 0.7708x 0.19 2
Tucurui �3.88, �49.74 49.54 2002�2010 y = 1645.7 + 7.299x 0.25 2
Novaponte �19.15, �47.33 12.8 1995�2005 y = 73.749 + 0.19923x 0.08 1
Ilha_solteira �20, �51 21.2 2000�2010 y = �18518 + 59.925x 0.59 5
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DVo ¼ DAo f
′ f �1 Aoð Þ� �

Ac þ Aoð ÞÞ=2þ Ao f
�1 Aoð Þ=2

�DAo hc � f �1 Aoð Þ� �
=2þ DAoð Þ2f ′ f �1 Aoð Þ� �

=2 ð4Þ

[30] As described above, errors were provided for the
elevation, area, and storage at each reservoir. Figure 9 shows
the results for Fort Peck Reservoir as an example. For the
period when water elevation was inferred from surface area,
its error was estimated by DAo.f′(f

�1(Ao)). Likewise, when
area was inferred from elevation, its error was calculated by
Dho.f′(ho). For Fort Peck Reservoir, the mean absolute errors
(over the entire period) of elevation, area, and storage are
0.87 m, 20.24 km2, and 0.65 km3, respectively. The mean
absolute errors of storage as a percentage of reservoir
capacity were plotted against the capacity in Figure 10 (data
are given in Table 2). Figure 10 suggests that as the capacity
increases, the uncertainty of the estimation decreases. For all
of the reservoirs larger than 40 km3, the mean absolute
errors are less than 3%. The reservoir with the worst per-
formance is Lake Oahe (13.0%), which results from over-
estimation of the area (from large shoreline to sqrt(area)
ratio)). The errors are consistent with the validation results in
section 3.1. For the two smallest reservoirs (Tshchikskoye
and Roseires), the mean absolute errors are 11.6% and 9.3%.
As the size of the reservoir decreases, there is a greater
chance that the altimeters will have short overpasses (fewer
elevation samples) and the modest resolution of MODIS
will affect area estimations. The average value for the errors
in Figure 10 is 4%.

4.2. Future Opportunities

[31] A key constraint on remotely sensed reservoir storage
is the limited number of altimetry-based reservoir surface
elevation products. Due to their narrow swaths, large foot-
prints, and effects of surrounding topography, current gen-
eration spaceborne radar altimeters can only monitor water
elevations for a relatively small number of large reservoirs.
Furthermore, the accuracy of the MODIS estimates of sur-
face area is limited by modest resolution (250 m). The
future Surface Water Ocean Topography (SWOT) mission
[Biancamaria et al., 2010; Durand et al., 2010; Lee et al.,
2010] in contrast will be revolutionary for understanding
global inland total fresh water storage. As contrasted with
current generation nadir-looking altimeters, SWOT will be
a wide-swath instrument which will provide images, rather
than tracks. It is expected to achieve spatial resolution on

the order of tens of meters (for purposes of identifying
water surfaces, as contrasted with 250 m for MODIS) and
centimetric vertical precision when averaged over targets of
interest (i.e., one or more km2 of surface area). However,
SWOT launch is not expected until 2020; hence the methods
developed here should prove useful for studying selected
large representative reservoirs for the next decade.

5. Conclusions

[32] We generated a global reservoir storage data set
based (aside from ancillary information about reservoirs at
capacity) solely from satellite remote sensing (with surface
elevation and area by-products). To this end, we first
developed an algorithm to estimate surface area time series
for selected large reservoirs (primarily based on the avail-
ability of altimetry water elevation products) from MODIS
16-day 250 m vegetation index images. The water elevation
(from altimetry products) and surface area (from MODIS)
were used to derive the elevation-area relationships for each
reservoir, such that either the water elevation or surface area
can be inferred from its counterpart when direct observation
is unavailable. Together, time histories for 34 global reser-
voirs were derived and the results were evaluated using

Figure 9. Ranges of surface level, area, and storage estimates at Fort Peck Reservoir, with the ranges
represented by shaded area in gray, altimetry-based estimates in red, and MODIS-based estimates in green.

Figure 10. The mean absolute error as a percentage of
reservoir capacity.
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observational data at five of these reservoirs (each located in
the U.S.). Our overall conclusions are as follows:
[33] 1. The MODIS-based water classification approach

generally works for these large reservoirs. In spite of its
relatively coarse spatial resolution, the daily coverage of
MODIS is a manifest advantage over the low repeat fre-
quency satellite sensors (e.g., Landsat, SARs). In addition,
the use of the unsupervised K-means clustering approach (as
contrasted with empirical thresholds) promotes consisten-
cies among the classified water area for the globally dis-
tributed reservoirs.
[34] 2. The storage estimates were highly correlated with

observations (0.92 to 0.99), with relatively small NRMSE
values (3% to 15%). Although a low correlation between the
derived surface elevation and area can result from many
conditions, a high correlation usually indicates good quality
for both data sets. The method works best for reservoirs
where the shoreline-to-area ratios are small. Where this is not
the case, overestimations of surface area are likely to occur.
When the reservoir has long shorelines surrounded by sea-
sonal vegetation, the MODIS-estimated storage tends to have
an exacerbated seasonality which does not agree with the
altimetry-base estimates. A moving average can be used to
filter this false signal.
[35] 3. Both the remotely sensed water elevation and sur-

face area had errors, usually resulting from a combination of
each sensor’s limitations and the retrieval algorithms. Such
errors were propagated into the storage estimates. An error
model was constructed that assessed the uncertainty of stor-
age as a function of surface level and its error for altimetry-
based estimates (or a function of area and its error for
MODIS-based estimations). Mean absolute errors range from
1% to 13% (as a percentage of capacity), with the error
decreases as the reservoir capacity increases. Of the 34
reservoirs, 31 have mean absolute errors less than 10%.
[36] 4. Due to the limitations of current generation sat-

ellite radar altimeters and the relatively coarse spatial res-
olution of MODIS, only a small number of large reservoirs
were studied here. Until the SWOT instrument is available
in 2020, methods developed here should prove useful for
providing multidecade records over selected large repre-
sentative reservoirs.
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