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Abstract Reservoir storage information is essential for accurate flood monitoring and prediction. South
Asia, however, is dominated by international river basins where communications among neighboring coun-
tries about reservoir storage and management are extremely limited. A suite of satellite observations were
combined to achieve high-quality estimation of reservoir storage and storage variations in South Asia from
2000 to 2012. The approach used water surface area estimations from the Moderate Resolution Imaging
Spectroradiometer (MODIS) vegetation indices product and the area-elevation relationship to estimate res-
ervoir storage. The surface elevation measurements were from the Geoscience Laser Altimeter System
(GLAS) on board the Ice, Cloud, and land Elevation Satellite (ICESat). In order to improve the accuracy of
water surface area estimations for relatively small reservoirs, a novel classification algorithm was developed.
In this study, storage information was retrieved for a total of 21 reservoirs, which represents 28% of the inte-
grated reservoir capacity in South Asia. The satellite-based reservoir elevation and storage were validated
by gauge observations over five reservoirs. The storage estimates were highly correlated with observations
(i.e., coefficients of determination larger than 0.9), with normalized root mean square error (NRMSE) ranging
from 9.51% to 25.20%. Uncertainty analysis was also conducted for the remotely sensed storage estima-
tions. For the parameterization uncertainty associated with surface area retrieval, the storage mean relative
error was 3.90%. With regard to the uncertainty introduced by ICESat/GLAS elevation measurements, the
storage mean relative error was 0.67%.

1. Introduction

More than 45% of the global land area (excluding Greenland and Antarctica) is covered by a total of 261
international river basins [Wolf et al., 1999]. The hydrologic and political effects of transboundary rivers are
enormous. Across the world, South Asia is the region that suffers the most from these impacts. Throughout
much of history, certain transboundary rivers such as the Ganges, Indus, and Brahmaputra rivers have
served as the cultural and economic backbone of South Asia, which contains one of the largest and densest
populations in the world. However, these transboundary rivers, along with the reservoirs on the rivers, are a
near-constant source of conflict between countries in the region. Due to these social, economic, and politi-
cally induced conflicts, countries in this region have largely failed to reach any agreements on sharing the
waters of these transboundary rivers [Biancamaria et al., 2011]. Consequently, the lack of communication,
particularly about reservoir storage and management, exacerbates the casualties and economic losses from
flood events. Statistics based on past records show that South Asia experiences one of the highest fatality
rates in the world due to floods [Adhikari et al., 2010]. Therefore, there is a strong societal need to advance
the scientific understanding of the flood regimes in South Asia and provide decision makers with the infor-
mation needed to better manage the reservoirs.

Satellite remote sensing has offered a unique opportunity to study the Earth from space [Rodrigues et al.,
2012]. Its global coverage (which is free of geographical and political limitations) has shed light on flood
monitoring and forecasting in these international river basins. One of the applications is to force hydrologi-
cal models with satellite precipitation products (e.g., the Tropical Rainfall Measurement Mission (TRMM)
product) to estimate river discharges [Huffman et al., 2007]. However, because reservoirs have not been
implemented in hydrological models in an operational fashion at large scale, a direct result is a significant
number of false alarms in basins with large reservoirs [Wu et al., 2012]. Therefore, near-real-time observation
data showing water storage for the reservoirs over these international basins is essential for improving
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hydrological modeling forecast skills and mitigating flood costs effectively. Even in cases when there is a
time lag with the observation data, the model results can still be enhanced through techniques such as
data assimilation [Bulygina and Gupta, 2011; Zaitchik et al., 2008].

The common approach for monitoring reservoir storage using remote sensing data is to retrieve water sur-
face area and elevation separately, and then combine these two pieces of information for calculating the
storage [Cretaux et al., 2011; Gao et al., 2012]. For measuring surface water extent, the most commonly used
spaceborne instruments are the Thematic Mapper (TM)/Enhanced Thematic Mapper Plus (ETM1) onboard
Landsat, and the Moderate-Resolution Imaging Spectroradiometer (MODIS) onboard Earth Observation Sys-
tem (EOS) Terra and Aqua satellites. Landsat has a high spatial resolution of 30 m with a repeat cycle of 16
days. Despite the benefits of its high spatial resolution, its low temporal resolution hampers its monitoring
capability—especially when the images are impacted by cloud contamination. For instance, Mercury et al.
[2012] found that on average Landsat views are 48% cloud free between 60�N and 60�S over land. Com-
pared to Landsat, MODIS has a much higher temporal resolution (i.e., daily). The trade-offs of MODIS sensors
are the coarser spatial resolutions (250 m/500 m/1000 m), along with the larger viewing angles (655�).
Nevertheless, the 16 day composite of MODIS images has a much larger cloud-free coverage area than that
of the (once every 16 days) Landsat image. This advanced temporal resolution is critical for monitoring
purposes.

For estimating water surface area, index-threshold-based approaches and image classification-based
approaches are most commonly used [Cheema and Bastiaanssen, 2010; Dewidar, 2011; Lu et al., 2011; Wu
and Liu, 2014]. Index-threshold-based approaches have the advantage of estimating the water surface area
with little computation. For example, the Normalized Difference Vegetation Index (NDVI) value of a water
pixel is either negative or close to zero. Therefore, a threshold (e.g., zero) can be set to differentiate the
water and nonwater pixels on remote sensing images [Islam et al., 2010]. In vegetated areas with abiotic
lakes, this might work rather well given the large NDVI contrast. However, separation of water from barren
areas of rock, sand, or snow will cause difficulties as these surfaces correspond to NDVI values close to zero
(20.1 to 0.1). Similarly algae blooms would cause significant trouble by exceeding the chosen threshold.
Therefore, other indices, such as the modified normalized difference water index (MNDWI) [Xu, 2006] have
also been used for extracting water coverage. Nonetheless, because both atmospheric absorption and
water quality vary by lake location, more accurate extraction of water bodies requires the threshold to be
manually adjusted according to actual situations [Ji et al., 2009]. When multiple reservoirs are studied simul-
taneously on a large scale over a long period, the work load for adjusting the threshold will increase since
each reservoir needs to be treated separately. Meanwhile, the accuracy of these results will decrease as it is
hard to apply one threshold to all of the varying situations—even just for one reservoir. To avoid this prob-
lem, unsupervised image classification algorithms, which minimize human error, are preferred for extracting
water surface area [Cheema and Bastiaanssen, 2010; Lu et al., 2011]. Despite their advantages of classifying
water coherently (for each reservoir image) at a large scale, unsupervised algorithms—which work by mini-
mizing the intracluster (i.e., within a given cluster) sum of squares—sometimes can be trapped in local
optima, and the accuracy of classification results can be compromised [Maulik and Saha, 2010]. In order to
improve the accuracy for water surface estimation, Gao et al. [2012] developed a new method which com-
bines the index and classification algorithms. A classification mask was derived based on the percentile
image of a set of crude classifications (using 0.1 as the NDVI threshold). The k-means classification algorithm
[Duda et al., 2001; Jain, 2010], which aims at minimizing the variance within a cluster, was applied to each
NDVI image within the masked area. The Gao et al. [2012] algorithm is the first validated algorithm that has
been used for estimating surface area of globally distributed reservoirs from one single sensor. This is
essential for the consistency of the reservoir product, both in terms of error analysis and uncertainty
quantification.

Besides the surface area, water surface elevation is also needed for estimating reservoir storage. Satellite
radar altimetry has been the most commonly used data source for estimating surface elevations of water
bodies [Calmant et al., 2008]. There are several databases which provide elevation data from ENVISAT, GFO,
Jason-1, Jason-2, and Topex/Poseidon (T/P) satellites [Birkett and Beckley, 2010; Cr�etaux et al., 2011; McKellip
et al., 2004]. However, due to the coarse cross-track spacing (several hundred kilometers) and the relatively
stretched along-track path length required to obtain accurate vertical measurements (typically 10 km or so),
such elevation data are only available for a couple hundred large lakes and reservoirs. The root mean square
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errors of radar altimeters range from about 3 to 33 cm, depending on the size of the target and the sensors
[Birkett, 1998; Birkett and Beckley, 2010]. In addition to the radar altimeters, the Geoscience Laser Altimeter
System (GLAS) onboard the Ice, Cloud, and land Elevation Satellite (ICESat) has been used for measuring
lake/reservoir elevations. Compared to radar altimeters, ICESat/GLAS has a high horizontal spatial resolution
(approximately 70 m) and a high vertical precision (about 10 cm) [Zhang et al., 2011]. These advantages
allow ICESat/GLAS to detect elevations for much smaller water bodies (with higher accuracy) than a typical
radar altimeter can. However, the use of ICESat/GLAS for monitoring water elevations operationally has
been hindered by its short lifetime and long repeat period (91 days). During its lifetime from 2003 to 2010,
the ICESat/GLAS instrument only collected elevations during designated campaigns [Wang et al., 2013]. As a
result, most of the lake studies using the ICESat/GLAS focus on interannual elevation variations [Li et al.,
2011; Phan et al., 2012; Shuman et al., 2006; Wang et al., 2013; Zhang et al., 2011].

Although a number of studies have used satellite data to estimate reservoir storage, the existing algorithms are all
limited in different ways. For instance, in methods based on Landsat images and ICESat/GLAS data [Duan and Bas-
tiaanssen, 2013; Song et al., 2013], the empirical relationship between the ICESat/GLAS elevation and the Landsat
water surface area was established so that storage can be estimated by area when the ICESat/GLAS data were
unavailable. However, the number of days when reservoir volume can be estimated is still very low because the
Landsat repeats every 16 days, and its images often suffer from cloud contamination. Most of the more frequent
storage observations rely on elevations from radar altimeters. Cr�etaux et al. [2011] had combined such elevations
with area estimations from various sources (e.g., Landsat, CBERS-2, ASAR). Due to the variety of sensor spatial/tem-
poral resolutions and frequencies, there is a lack of consistency within the product, and the product uncertainties
are hard to quantify. In contrast, Gao et al. [2012] developed a global large reservoirs storage estimation algorithm
which only relies on the MODIS NDVI product for estimating surface areas. The trade-off of using the medium
resolution MODIS data (250 m) is that fractional water coverage for the MODIS pixels at the reservoir borders
introduces error during the unsupervised classification, which especially lowers the accuracy for reservoirs with
complicated shorelines. In summary, simultaneously optimizing both the spatial/temporal resolution and the cov-
erage remains the biggest challenge toward monitoring more reservoirs with high accuracy.

In South Asia, despite the significant benefits that would result from having near-real-time reservoir storage
information, this has been difficult to obtain because remotely sensed surface elevation values from radar altim-
eters are only available for a few large reservoirs sporadically. Although water surface elevation through ICESat/
GLAS is an alternative, to our knowledge, there has been no storage estimations available over South Asia
based on this data source. The objective of this paper is to generate a validated remotely sensed reservoir stor-
age data set in the South Asia region which can be used for various water resources management and Earth
System Modeling applications. For this purpose, the Gao et al. [2012] MODIS area algorithm was improved such
that high-quality water storage estimations can be achieved using ICESat/GLAS elevation and MODIS surface
area. In addition to the data analysis and results validation, storage estimation uncertainties (due to reservoir
surface area retrieval algorithm parameterization and elevation measurement errors) were also quantified.

2. Data Sources and Reservoir Selection

This section describes the data sources and the criteria used for selecting the reservoirs monitored in this study.

2.1. Satellite Data
2.1.1. MODIS Data
The MODIS data, which were used for estimating reservoir area, are available from the NASA Land Processes
Active Archive Center (http://lpdaac.usgs.gov/). Specifically, we acquired the NDVI 16 day product at 250 m
spatial resolution as a gridded level-3 product in Sinusoidal projection (MOD13Q1) [Solano et al., 2010] from
Terra. The latency of the product ranges from zero to 16 days, depending on the difference between the
last product release date and the current date. The reasons for choosing MOD13Q1 are: (1) its 250 m spatial
resolution is highest among the MODIS products, and (2) Terra MODIS products became available in Febru-
ary 2000, while the counterpart Aqua MODIS products were not available until July 2002

2.1.2. ICESat/GLAS
The ICESat mission was launched in January 2003 and it ended in February 2010 [Shuman et al., 2006; Zhang
et al., 2011]. The GLAS on ICESat provides global measurements of polar ice sheet mass balance, cloud and
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aerosol heights, land topography, and vegetation characteristics with unprecedented accuracy [Schutz et al.,
2005; Zhang et al., 2011; Zwally et al., 2002]. The ICESat/GLAS Release-33 elevation data available from 2003
to 2010 were obtained through the U.S. National Snow and Ice Data Center (NSIDC, http://nsidc.org/data/
icesat/). During the two mission validation periods (20 February 2003 to 21 March 2003 and 25 September
2003 to 4 October 2003), the ICESat/GLAS repeat time was 8 days. However, during the rest of the mission,
its repeat time was 91 days. A given location along the tracks of ICESat/GLAS was typically observed less
than 24 times during the entire mission period with a vertical precision of better than 10 cm [Zhang et al.,
2011; Zwally et al., 2008].

2.1.3. Landsat 7 Enhanced Thematic Mapper Plus (ETM1)
To evaluate MODIS-based water area estimations, Landsat 7 ETM1 Level 1 data were employed to create
high-quality water classification images. For each of the five selected reservoirs (section 2.3), a Landsat 7
ETM1 image with little cloud contamination (less than 10%) was acquired from the USGS website (http://
earthexplorer.usgs.gov/). The Support Vector Machine (SVM) supervised classification approach [Boser et al.,
1992; Cortes and Vapnik, 1995] was then used to generate the corresponding Landsat water classification
image from bands 1–5 and 7.

2.2. Gauge Observations
For validating the remotely sensed reservoir elevation and storage estimations, gauge observations reported
by the Indian Century Electricity Authority (CEA) were employed. The online data set (which is available at
http://www.cea.nic.in/hyd_arch.html) contains daily reservoir elevation, storage, and cumulative energy gener-
ation data for 30 hydropower reservoirs from 2008 to present, with a lag time of about 2–4 months.

2.3. Reservoir Selection
Reservoir information provided by the Global Reservoir and Dam (GRanD) database [Lehner et al., 2011] was
utilized to help identify the reservoirs selected in this study. Considering the medium resolution of MODIS
NDVI and the narrow ICESat/GLAS tracks, the GRanD reservoirs which meet the following criteria were
selected: (1) the area at capacity is larger than 65 km2—which is equivalent to a total of 1040 MODIS NDVI
grid cells (at 250 m 3 250 m each)—to ensure that it (the surface area) can accurately be estimated from
the medium resolution MODIS NDVI (250 m); and (2) there were at least five along-track ICESat/GLAS water
surface elevation measurements (each with a footprint of 70 m and along track spacing of 172m) over the
selected reservoir for each overpass (such that an average elevation—which represents the entire reser-
voir—can be paired up with the MODIS area).

Following the above criteria, a total of 21 reservoirs were chosen for this study, which represent 28% of the
integrated reservoir capacity in South Asia (according to the GRanD database). The locations of these reser-
voirs are shown in Figure 1.
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Figure 1. Locations of 21 selected reservoirs in South Asia. For each reservoir ID, detailed information (e.g., name, location, capacity) is pro-
vided in Table 1.
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3. Methodology

The algorithm for estimating the reservoir storage contains the following steps: (1) estimation of the water
surface area of reservoirs based on MODIS NDVI images from 2000 to 2012; (2) extraction of the reservoir
surface elevations from ICESat/GLAS data; (3) establishment of the area-elevation relationship for the reser-
voir of interest, and then retrieving the water surface elevation value from the water surface area value
using the established relationship; and (4) calculation of the reservoir storage over time from water surface
elevation and area time series. Figure 2 shows the flowchart of the algorithm. More details of the algorithm
are described in the following paragraphs.

3.1. Surface Area Estimation
The surface area estimation method is a modification of the algorithm created by Gao et al. [2012]. In Gao
et al. [2012], the storage estimations based on MODIS surface areas (using the area-elevation relationship)
were not as good as the storage estimations based on radar altimeter elevations. Given the goal of this
study is to use MODIS surface area (considering the limited availability of ICESat/GLAS elevation observa-
tions) as the primary input for estimating storage, it is essential to improve upon the earlier [Gao et al.,
2012] MODIS area algorithm. Therefore, a classification enhancement approach was developed for this
study. The main idea is to enhance individual scenes based on the percentile information from the 13
year water probability reference data to correct misclassified pixels, and to assign an appropriate class to
the unclassified pixels. The basic principle is to use the spatial and temporal information from the NDVI
images along with the fact that inner parts of the reservoir are more likely to be classified as water (as
compared to outer parts). This approach helps enhance the area retrieval accuracy and facilitate success-
ful retrieval—even in the case when a large portion of an image is of low data quality (e.g., cloud contam-
inations). Here we explain the updated algorithm entirely using the following steps (as illustrated in
Figure 2).

1. Mask creation. For each 16 day NDVI image from 2000 to 2012 (296 images in total), an index-
threshold-based approach was used—such that pixels with NDVI values less than 0.1 were considered
as water. As a result, 296 water coverage images were created. A water coverage percentile image
(herein after referred to as a mask) was then calculated with every pixel value representing the percent-
age of that pixel had been counted as water (in the 296 water coverage images over the 13 year
period). Then, an extension was generated by expanding the mask to a buffer area which covered any
‘‘nonwater’’ areas that fell within a (3 3 3 pixels) moving window centered on each water pixel. This
way the mask and its buffer area would be able to cover all possible water pixels for the studied reser-
voir. Figure 3 shows an example of the extended mask (with its buffer area included) over the Hirakud
reservoir.

2. k-means classification. The k-means clustering algorithm was applied to classify all pixels of the MODIS
NDVI image within the extended mask area. The pixels were divided into three classes: ‘‘water,’’ ‘‘non-
water dry surface,’’ and ‘‘nonwater wet surface.’’ The classification within the extended mask area alone

can effectively reduce the
amount of computation and
increase the accuracy of MODIS
water area estimation (relative
to not using a mask as a con-
straint). However, the accuracy
of this classification approach
also depends on the quality of
the MODIS NDVI data and the
purity of pixels. In order to
solve the problems caused by
pixels with bad quality, the fol-
lowing screening process was
used: if the reliability of a pixel
was not denoted as ‘‘good
data’’ (i.e., the pixel was identi-
fied as ‘‘cloudy,’’ or ‘‘snow/ice,’’

(1) Mask creation

(3) Mask zones division

Storage calculation
(5) Image quality

calculation

(4) Water fraction
calculation (by zone)

MODIS NDVI

ICESat
Data

(6) Image enhancementRelationship creation

Elevation retrieval

(2) K-means
classification

Reservoir
storage

Water area calculation

Figure 2. Flowchart of the reservoir storage estimation algorithm, with the image
enhancement process highlighted in blue.
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or ‘‘marginal’’), then it was designated as
‘‘unclassified’’ (i.e., neither ‘‘water’’ nor ‘‘non-
water’’). Gao et al. [2012] used a majority filter
as a post classification processing mechanism
to eliminate the ‘‘salt and pepper’’ effect [Al-
amri et al., 2010; Gonzalez and Woods, 2007].
Nonetheless, this filtering does not improve
the accuracy much when the low-quality
MODIS NDVI pixels cover a large portion of
the image. The pixel purity problem, which is
caused by a mixture of surface components
within a pixel, is much less a concern. This is
because the purity problem only occurs
within the boundary pixels, and the errors
(overestimation/underestimation) usually
cancel out (unless the NDVI values for the
nonwater portion have a very large annual
variation) [Gao et al., 2012].

3. Mask zones division. The mask image (without the buffer area) was grouped into 50 zones based on the per-
centile information, using a fixed increment percentile value of 2%. This threshold (of 2%) allowed us to narrow
down the differences among pixels within a given zone. In other words, all the pixels within the same zone
indicate that they have a similar possibility of being classified as water. Here we use a simple synthetic example
(with only three zones) to explain the concept and process. In the example, the mask image contains 8 3 8 pix-
els with the percentile values as shown in Figure 4. Using a threshold of 1/3 (which is one divided by the
number of zones), the mask area can be divided into three different zones. Each pixel in the mask image is
then assigned to a zone (zone 1, 2, or 3) according to its percentile value. For instance, since the two pixels in
the top row of Figure 4 have the percentiles of 0.1 and 0.2 (which are both between 0 and 1/3), they are each
assigned to zone 1.

4. Water fraction calculation (by zone). Zonal water coverage maps are created for each classification image
by overlaying the percentile mask image on it (shown in Figures 5a and 5b). The percentage of water pix-
els within each zone is calculated using equation (1):

pi5
ni

Ni
; i51; 2; . . . ; K (1)

where ni is the number of pixels in the ith zone that are classified as water (according to the MODIS NDVI
threshold), Ni is the total number of pixels in the ith zone (according to the delineation of the mask
image), and K is the total number of zones. In the simple synthetic example, the pi value for zone 1, zone
2, and zone 3 are 15/16, 6/9, and 0/3, respectively.

5. Image quality assessment. A qual-
ity parameter (Q) is computed for
each classification image accord-
ing to equation (2).

Q5

XK

i51

ðpi20:5Þ2

K
(2)

Q is a measure of the overall con-
sistency of the surface water clas-
sification from a MODIS NDVI
image. Given pi is from 0 to 1, Q
has a range between 0 and 0.25.
The Q value increases as the qual-
ity of a water classification image
increases. If a classification is of
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Figure 4. A simple example of dividing the mask into different zones according to its per-
centile values (Zone 1: 0–0.33, Zone 2: 0.33–0.66, and Zone 3: 0.66–1).
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Figure 3. Mask of the Hirakud reservoir (with percentile for water
class). Note a pixel (from a MODIS NDVI image) is considered to be cov-
ered by water when NDVI< 0.1. Percentile is calculated for that pixel
from 296 water coverage images from 2000 to 2012.
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high quality, then the pi values
for the zones classified as water
should be 1 (or close to 1), while
the pi values for the zones clas-
sified as land should be zero (or
close to zero). In the case of an
ideal classification (i.e., pi equal
or close to 1 or 0 for all i values),
the Q value is close to the maxi-
mum (0.25). In contrast, if a clas-
sification image is of very low
quality, the pi values for most of
the zones should be close to 0.5
(0.5 represents the case of a
random distribution of water
pixels within a zone). As a result,
the Q value is close to zero for a
low-quality image. For the sam-
ple classification illustrated in
Figure 5, its Q value equals to
0.156.

6. Classification image enhancement. For each zone (i 5 1, 2, . . ., K) within one classification image, if its pi

value is larger than a threshold T, then all pixels in the next zone (i.e., jth zone, j ranges from i11 to K) are
set as water. The threshold T is determined according to equation (3):

T5
Cp Q > CQ

pm Q � CQ

(
(3)

where pm is the median of all the pi values within one classification image, and Cp and CQ are both con-
stant parameters. The threshold value T for each image is based on its quality Q: if Q is larger than CQ,
then T is equal to Cp; otherwise, T equals pm. Calibrated over two reservoirs where observations are avail-
able (i.e., the Pong and Hirakud reservoirs), Cp and CQ are set to 0.7 and 0.1, respectively. The uncertainties
associated with these parameter selections are discussed further in section 4.2.1. The enhancement pro-
cess for this simplified example is illustrated in Figure 5c. Given that the Q value (Q 5 0.156) of the classifi-
cation image is larger than CQ (CQ 5 0.1), the threshold T is set to 0.7. For this classification image, since
p1 (p1 5 0.94) is larger than T (T 5 0.7), all pixels in zone 2 and zone 3 are assigned as water.

This classification image enhancement is based on two principles. First, a good classification image should have
good consistency—meaning pixels in the same zone should have the same classification results. Second, pixels
in the zones with a higher percentile should have a greater possibility of being classified as water than those in
zones with lower percentile values. This means that if the probability that a zone is covered by water exceeds
the threshold T (as defined in equation (3)), all pixels of the remaining inner lake zones are also labeled as
water. As an example, the water classification results for the Hirakud Reservoir (day 305 of 2011) are shown in
Figure 6. The quality parameter Q for Figure 6b is 0.080, and the threshold T is equal to pm (pm 5 0.64). By com-
paring the T value (i.e., 0.64) with the pi values by zone, the initial classification image (i.e., Figure 6b) was
enhanced by assigning all pixels from zone 15 to zone 50 as water (as shown in Figure 6c). The classification
improvement due to the enhancement operation can be detected by visually comparing Figures 6b and 6c.

After the preliminary classification and image enhancement are completed, the reservoir surface area can
be estimated by summing up all the water pixels within the classification image (as the area for each
MOD13Q1 pixel is a constant 0.25 3 0.25 km2). As an example, the water surface area time series for the Hir-
akud reservoir is shown in Figure 7a.

3.2. Water Surface Elevation Estimation From ICESat/GLAS
The reservoir surface elevation results were retrieved from ICESat/GLAS orbital measurements in two steps.
First, using the reservoir area boundary identified by the MODIS water classification (that was closest in

(a)

Mask images ge

(b)

Classification image

(b)

Classification image
of MODIS

(c)

Classification image
after enhancement

Zone 1                      Zone 2                    Zone 3

Pixel of mask image in Zone 1 Pixel of mask image in Zone 2g
Water pixel         Non water pixel    

g
Pixel of mask image in Zone 3

Pixels within one red box belongs to the same zone during quality calculation     

Figure 5. A simple example showing the classification image enhancement process: (a)
dividing the mask file into multiple zones; (b) assigning zone values to the classified image;
and (c) enhancing the classified image based on image quality.
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time with the ICESat/GLAS overpass) and the ICESat/GLAS orbital geographical location information, all ele-
vation measurements within the reservoir were extracted. Then, the representative elevation of a reservoir
for a given day was estimated as the average of all the measurements within the overpassing orbit.

3.3. Area-Elevation Relationship
The water area and elevation data collected during the overlapping period were paired up for each reservoir
to get reservoir-specific area-elevation relationships. Figure 7b shows one example of the area-elevation rela-
tionship for the Hirakud reservoir. By creating area-elevation relationships, we could use the MODIS-based water
surface area to estimate the water surface elevation when the ICESat/GLAS data were not available. Table 1
shows the area-elevation relationships and coefficients of determination for all the reservoirs in this study.

3.4. Water Storage Estimation
Since the ICESat/GLAS elevation data were very limited, we could not combine the ICESat/GLAS water elevation
and the MODIS water surface area directly to calculate the water storage. Instead, the elevation was inferred from
the MODIS surface area and the area-elevation relationship. The storage was then estimated using equation (4):

VRS5Vc– hc–hRSð Þ Ac1ARSð Þ=2 (4)

where Vc, hc, and Ac represent storage, area, and water elevation at capacity, and VRS, hRS and ARS are the
estimated storage, area, and water elevation from remote sensing. Figure 8 shows the time series of reser-
voir storage for the Hirakud reservoir as an example.

Figure 6. An example of the Hirakud Reservoir showing the MODIS NDVI classification of day 305 of 2011. (a) The original MODIS NDVI
image; (b) the classification results without image enhancement; and (c) the classification results after image enhancement.

Figure 7. The area-elevation relationship over the Hirakud reservoir (a) time series of MODIS surface water area and ICESat/GLAS surface
elevation; (b) scatterplot for the area-elevation relationship.
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Using the methods explained in this section, time series values of reservoir surface area, surface elevation,
and water storage were estimated for the 21 selected South Asian reservoirs from 2000 to 2012.

3.5. Statistical Criteria for Results Validation
Three statistical criteria were selected for validating the elevation and storage estimations from this study.
They are the coefficients of determination (R2, equation (5)), bias (B, equation (6)), and normalized root-mean
square error (NRMSE, equation (7)).

R25
CovðRS;ObsÞ
DðRSÞDðObsÞ (5)

B5RS2Obs (6)

NRMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i51

ðRSi2ObsiÞ2

n

s

Obs
(7)

where RS is the result from remote
sensing, Obs is the observation
data, n is the number of data
points, and RS and Obs are the
average values of the remote sens-
ing result and the observational
data. Cov() means covariance and
D() represents the variance.

4. Results and Discussion

4.1. Results Validation
The remotely sensed results were
validated comprehensively
through two steps. First, the
MODIS surface water classification

Table 1. Reservoir Area-Elevation Relationships and Coefficients of Determination for the 21 Reservoirs

ID Reservoir Country
Location
(�N, �E)

Area
(km2)

Capacity
(106 m3) Purposea

Area-Elevation
Relationshipb R2

01 Bango India 22.61, 82.60 104 3416 I,E y 5 0.238x 1 332.0 0.71
02 Bansagar India 24.19, 81.29 384 5410 I,E y 5 0.051x 1 318.6 0.98
03 Bargi India 22.95, 79.93 268 3920 I,E y 5 0.101x 1 398.9 0.96
04 Chandil India 22.98, 86.02 174 1961 I,E y 5 0.14x 1 171.4 0.77
05 Hirakud India 21.52, 83.85 603 4709 I,E y 5 0.029x 1 174.2 0.85
06 Karnafuli Bangladesh 22.5, 92.23 777 6477 I,E,F y 5 0.073x 1 13.67 0.81
07 Krisharaja Sagar India 12.42, 76.57 100 1369 I,E,W y 5 0.277x 1 729.2 0.88
08 Mangla Pakistan 33.13, 73.64 251 7300 I,E,F y 5 0.243x 1 311.7 0.64
09 Malaprabha India 15.82, 75.09 130 1068 I,E y 5 0.112x 1 612.6 0.96
10 Matatila India 25.10, 78.37 139 1133 I,E y 5 0.112x 1 297.7 0.90
11 Nagarjuna Sagar India 16.57, 79.31 285 6538 I,E y 50.379x 1 100.2 0.90
12 Narayanapura India 16.22, 76.35 102 1071 I y 5 0.140x 1 478.6 0.77
13 Pongc India 31.97, 75.95 260 6946 I,E y 5 0.237x2 2 188.6x 1 37,675 0.96
14 Rajghat India 24.76, 78.23 224 2172 I,E y 5 0.085x 1 352.0 0.98
15 R. P. Sagar India 24.92, 75.58 198 1568 I,E y 5 0.134x 1 325.5 0.94
16 Rengali India 21.28, 85.03 392 3168 I y 5 0.072x 1 100.2 0.88
17 Singur India 17.75, 77.93 105 850 W y 5 0.082x 1 513.1 0.94
18 Sriram Sagar India 18.97, 78.34 450 3172 I,E y 5 0.038x 1 320.4 0.98
19 Tawa India 22.56, 77.98 200 2310 I y 5 0.142x 1 335.6 0.98
20 Tungabhadra India 15.27, 76.33 390 3764 I,E y 5 0.05x 1 481.1 0.75
21 Yeldari India 19.72, 76.73 82 934.3 I,E y 5 0.459x 1 41.6 0.98

aI is irrigation, E is electricity generation, W is water supply, and F is flood control.
by is elevation and x is area.
cA quadratic area-elevation relationship was selected for Pong reservoir since its R2 (0.96) is much higher than the R2 from a linear

relationship (0.89).

Figure 8. Time series of the MODIS-based storage estimations for the Hirakud reservoir.
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images were compared with Landsat high-resolution (30 m) classifications. Second, the reservoir elevation
and storage data set from remote sensing were evaluated with gauge observation. Five reservoirs (i.e., Rana
Pratap Sagar, which is also referred to as R. P. Sagar; Hirakud; Nagarjuna Sagar; Pong; and Rengali) were
selected for the validation, since they are the only ones among the 21 reservoirs with both observed eleva-
tion and storage data available (from 2008 to 2012).

Figure 9 shows the original Landsat false color images, Landsat classifications, MODIS NDVI images (which
overlapped with the Landsat date), and MODIS classifications. The area estimations are summarized in
Table 2. The MODIS classifications are in good agreement with the Landsat results, with percent error values
ranging from 1% to 9%. The main differences are attributed to the different spatial resolutions. The

Figure 9. Comparisons between Landsat and MODIS surface water classification results: (a) Landsat ETM 1 images (RGB); (b) Landsat classi-
fications; (c) MODIS NDVI images; (d) MODIS classifications over five reservoirs. The reservoirs are Hirakud (ID: 05), Nagarjuna Sagar (ID: 11),
Pong (ID: 13), R. P. Sagar (ID: 15), and Rengali (ID: 16). Note that the date is the starting date of 16 day period. For Figure 9d, blue pixels
stand for underestimated results, green pixels are overestimated results, and black ones are invalid classification pixels (such as a small
lake outside the reservoir, or rivers connected with the reservoir). Black boxes (for some of the panels within Figure 9a and Figure 9d) are
used to highlight the regions where the enhancement performed well.
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enhanced MODIS classification
algorithm also showed good per-
formance when some pixels of
the original NDVI images were of
low quality (i.e., the Nagarjuna
Sagar, R. P. Sagar, and Pong res-
ervoirs). For the Nagarjuna Sagar
reservoirs, pixels in the black

boxes would have been misclassified as ‘‘nonwater’’ if the enhancement operation was not performed.
Noise in the Pong reservoir NDVI image was also effectively removed in final MODIS classification image.
For the R. P. Sagar reservoir, there is an island within the region marked by a box in Figure 9. Due to the
MODIS NDVI quality issue, the island in the original MODIS image is much smaller than that in Landsat. The
underestimated island area was corrected in the enhancement operation by rectifying the misclassification
using the historical percentile coverage information.

To evaluate the elevation and storage estimations, observation data were obtained from the CEA,
(http://www.cea.nic.in/hyd_arch.html), which provides daily observed water storage (Vo) and water
level (ho) for 30 hydropower reservoirs (data available since 2008, with roughly a 2–4 month lag time).
For comparison purposes, another remotely sensed data set was generated over these five reservoirs
from the same data source (i.e., MODIS and ICESat/GLAS) using the algorithm by Gao et al. [2012].
Figure 10 shows the validation results of these two algorithms. Among the five reservoirs, both algo-
rithms performed the best over the Hirakud. This is because the Hirakud has the largest area (among
the five evaluated reservoirs) and it is surrounded by heavy vegetation whose NDVI values are very
distinctive from those of water. For the Pong reservoir, Gao et al.’s [2012] algorithm tends to underes-
timate when the storage was large while overestimate when the reservoir was small. Examination of a
series of MODIS classification images for this reservoir using both algorithms (results are not shown)
suggest that the Gao et al. [2012] approach had overestimated the area when the reservoir was about
half full. Since the Gao et al. [2012] approach created two classes (i.e., ‘‘water’’ and ‘‘nonwater’’), the
wetland was often misclassified as ‘‘water.’’ But when the reservoir was mostly full or mostly empty,
the wetland was either very small or had a great contrast to the water. A direct consequence of this
is a skewed area-elevation relationship—which ultimately led to the elevation and storage errors. To
overcome this problem, we designated three classes (with ‘‘wetland’’ as a standalone class) instead of
two. For this particular reservoir, a large wetland was created when the water level retreated to its
middle range.

According to the statistics in Table 3, the R2 values between the remotely sensed results (elevation and stor-
age) from this study and in situ data ranged from 0.83 to 0.96. The new algorithm outperformed the Gao
et al. [2012] algorithm in all cases except for the elevation bias at Nagarjuna Sagar. Taking the NRMSE of

Table 2. Comparisons Between Landsat and MODIS Water Surface Area Estimations

Hirakud Nagarjuna Sagar Pong R. P. Sagar Rengali

Landsat area (km2) 572 185 207 160 189
MODIS area (km2) 554 179 195 158 195
Total error (km2) 218 26 212 22 6
Percent errora (%) 3 3 6 1 3

aPercent error is defined as |MODIS area—Landsat area|/Landsat area 3 100%.
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Figure 10. Validations of the remotely sensed water surface elevation and storage data using gauge observations (available since 2008,
with 2–4 months lag) over five reservoirs. The x axis is the observation data and the y axis is the remotely sensed result. The blue dots
represent results obtained from the enhanced algorithm in this paper and the red dots are results based on the Gao et al. [2012]
algorithm.
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storage as an example, this algorithm led to an improvement [over Gao et al., 2012] of 6.10%, 11.77%,
28.26%, 18.40%, and 8.76% for the Hirakud, Nagarjuna Sagar, Pong, R. P. Sagar, and Rengali, respectively.
This result suggests that both the calibrated reservoirs (Pong and Hirakud) and the uncalibrated reservoirs
have been improved similarly. As explained in sections 3.1, the key differences between these two algo-
rithms are the number of classes used in the k-mean unsupervised classification and the postclassification
filtering procedure. The algorithm used in this study outperformed Gao et al. [2012] in both accounts. First,
the generation of three classes meant that the misclassifications of the pixels along the shore were reduced.
Second, the postclassification enhancement employed a more realistic weighted procedure that took into
account that percentile zone a pixel belonged to (versus the simple ‘‘majority filter’’ method, which treats all
pixels evenly across the entire classification image).

The results from Table 3 also suggest multicriteria should be considered for a comprehensive evaluation.
Although a low correlation indicates low accuracy, a high correlation does not necessarily mean there is not
a problem. For instance, the R2 values from both algorithms are very high over the Hirakud, but the biases
using the Gao et al. [2012] algorithm were much larger than those from our algorithm due to underestima-
tions. Another example is the Nagarjuna Sagar reservoir. Although the bias of elevation at the Nagarjuna
Sagar reservoir was smaller from the Gao et al. [2012] algorithm, the method proposed in this study per-
forms better when R2 and NRMSE are both considered.

4.2. Uncertainty Analysis
In this section, uncertainty analysis for the remotely sensed storage estimations was conducted. The sources
of storage estimation error include ICESat/GLAS elevation error, MODIS water surface area error, area-
elevation relationship error, and the reservoir configuration errors. Specifically, we investigated the uncer-
tainty of storage associated with two sources: the surface area estimation and the ICESat/GLAS elevation
data. The first part of the area-elevation relationship error, which is directly caused by these two sources, is
therefore addressed implicitly. The second part of the area-elevation relationship error is related to the
assumption of a linear area-elevation relationship. Although the real area-elevation relationship is most
likely nonlinear and can vary if the slope changes, the error from the linear approximation is not due to a
lack of information. The reservoir configuration errors are errors associated with the reported reservoir char-
acteristics at capacity (storage, area, and elevation). When the reservoir configurations are biased, an offset
with the remotely sensed storage will be created according to equation (4). However, the storage variation
is not affected by this error source, since the constants at capacity will be canceled out when storage
change is calculated. The other error sources, such as the fluvial sedimentation, may cause storage overesti-
mation over time. Nonetheless, according to the storage time series in Figure 11, none of the 21 reservoirs
has shown a clear increasing trend that can be related to a sedimentation effect over the 13 years. Because
of the above reasons—and because the reservoir configuration and the sedimentation errors are hard to
quantify—uncertainties due to these two sources are not discussed.

4.2.1. Uncertainty Due to Parameter Selection in Water Area Classification
During the water area classification process (as described in section 3), parameterization uncertainty is related
to the selection of two parameters: CP and CQ. In equation (3), CP is set to 0.7 based on ‘‘trial and error’’ over
the Pong and Hirakud reservoirs. When Cp is set to a lower value (e.g., 0.5), a nonwater pixel will have a higher
possibility to be assigned as water (according to equation (3)). In order to test the uncertainty of CP, we calcu-
lated the storage difference between Cp 5 0.5 and Cp 5 1 for each of the 21 reservoirs. Figures 12a and 12b

Table 3. Statistical Validation Results for the Remotely Sensed Reservoir Elevation (h) and Storage (V)

Hirakud Nagajuna Sagar Pong Rengali R. P. Sagar

Gaoa Zhangb Gao Zhang Gao Zhang Gao Zhang Gao Zhang

R2 H 0.96 0.96 0.69 0.85 0.55 0.98 0.62 0.83 0.81 0.92
V 0.92 0.94 0.69 0.85 0.56 0.98 0.71 0.85 0.81 0.92

Bias h (m) 20.84 20.34 21.20 21.45 2.02 0.22 20.47 0.33 0.42 0.22
V (106 m3) 2284.50 298.10 2136.30 232.30 138.69 10.70 2133.90 6.08 47.47 12.35

NRMSE H (%) 11.28 7.43 10.61 6.78 28.32 6.45 16.27 12.68 6.87 4.45
V (%) 18.87 12.77 36.52 24.75 37.77 9.51 43.60 25.20 24.21 15.45

aGao refers to the algorithm in Gao et al. [2012].
bZhang refers to the algorithm in this study.
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show the absolute uncertainty and relative uncertainty due to the choice of Cp. The absolute uncertainty
increases as the reservoir capacity increases, while the relative uncertainly has no clear relationship with the
capacity. The average relative uncertainty is 5.54%. The second parameter, CQ, is used as a criterion to identify
whether a classification should be considered ‘‘good’’ or ‘‘poor.’’ When CQ is set to 0 (i.e., the minimum of Q), the
final classification results (after the enhancement operation) for most of images will be similar to the results
derived by the K-means algorithm, which tends to underestimate the water surface area. However, when CQ is
set to 0.25 (i.e., the maximum of Q), although noise can be easily deleted, the water surface area may be overes-
timated. The difference between the storage estimation values when using CQ 5 0 and CQ 5 0.25 represents
the uncertainty of a given reservoir. The absolute uncertainty and relative uncertainty associated with CQ for
the 21 reservoirs are shown in Figures 12c and 12d, respectively. Although the absolute uncertainty due to CQ

shares a similar pattern with that due to Cp, the relative uncertainty due to CQ converges to a small value (of 2–
3%) as the reservoir size increases. Overall, the choice of Cp adds more uncertainty than the selection of CQ.
Nonetheless, these relative uncertainties are smaller than the NRMSE values in Table 3.

4.2.2. Uncertainty Due to ICESAT/GLAS Elevation
Each elevation data record that was used for the area-elevation relationship represented the average of all ICE-
Sat/GLAS observations over a given reservoir. Therefore, there is an uncertainty associated with this averaged
elevation. This uncertainty could be from sensor measurement errors and/or natural variations (including sur-
face roughness and surface wind). Equation (8) shows the uncertainty of storage due to elevation uncertainty:

DV5ðAc1ARSÞDh=2 (8)

where DV is the storage uncertainty due to the ICESat/GLAS elevation, Ac is the reservoir area at capacity,
and ARS is the estimated area from MODIS. Dh is the difference between the maximum and minimum

Figure 11. Remotely sensed storage time series for the 21 South Asian reservoirs.
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ICESat/GLAS elevation values over the water surface along the track on the observation day. Unlike the
quantification of uncertainties due to parameterization, the calculation of uncertainty due to elevation is
based on analyzing real observations from ICESat/GLAS. Because of the relatively high accuracy of ICESat/
GLAS elevation data (less than 10 cm according to Zhang et al. [2011]), uncertainty of storage caused by ele-
vation is much smaller than that caused by area estimation. Although the absolute uncertainty in Figure
12e has a similar trend as those shown in Figures 12a and 12c, it is about an order of magnitude smaller.
For relative uncertainty, there was no noticeable trend when the size of the reservoir changed. The relative
uncertainty due to ICESat/GLAS elevation ranged from 0.34% to 1.67%, and its mean value was 0.67% (Fig-
ure 12f).

4.3. Reservoir Storage Variations in South Asia
Figure 11 shows the storage variations for the 21 studied reservoirs in South Asia from 2000 to 2012. The
total capacity of theses reservoirs is 83.9 km3. The record length for all reservoirs is 13 years except for the

Figure 12. Uncertainty analysis results. (a) Absolute uncertainty due to Cp in water area classification; (b) relative uncertainty due to CP

in water area classification; (c) absolute uncertainty due to CQ in water area classification; (d) relative uncertainty due to CQ in water area
classification; (e) absolute uncertainty due to ICESat elevation observations; and (f) relative uncertainty due to ICESat elevation
observations.
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Bansagar reservoir (where construction was not completed until 2006). A few examples that explore the
hydrological implications of these storage time series are as follows.

Built in 1975, the Pong reservoir (i.e., Maharana Pratap Sagar) is the highest earthfill dam in India. It is
located on the Beas River within the wetland zone of the Siwalik Hills (i.e., the Outer Himalayas) in the state
of Himachal Pradesh. Because it is close to Himachal Mountain, upstream snow and glacial melt contributes
substantially to the lake inflows. With large temperature and precipitation variations, this region is prone to
floods during the monsoon season. According to the Global Active Archive of Large Flood Events database
[Brakenridge et al., 2002], major floods in August of 2001 and 2007 caused 16 and 76 fatalities, respectively.
These flood events are well represented by the peaks shown in the Pong reservoir storage time series in Fig-
ure 11. Also, in January 2010, the storage was only 20% of capacity, which reflects the 2009–2010 drought
in the Himachal area.

Yeldari reservoir, another earthfill dam in India, is mainly used for irrigation and hydroelectricity generation.
According to media reports, two severe drought events occurred in the region in 2004 and 2012, and the Yel-
dari dam reservoir almost dried up in both cases (‘‘38 reservoirs down to 30 percent storage’’ from Rediff Busi-
ness, http://www.rediff.com/money/report/water/20040728.htm, 2004; and ‘‘Marathwada remains parched’’
from the Afternoon & Courier, http://www.afternoondc.in/city-news/marathwada-remains-parched/article_
65090, 2012). The remotely sensed storage of the Yeldari has demonstrated clear consistency with the
reported results. Moreover, the satellite estimated time series indicates that the 2004 drought lasted until the
beginning of 2005 and that there was another (smaller magnitude) drought in 2009.

Another example is the Bansagar reservoir, which is located on the Sone River and is used for irrigation and
hydroelectricity generation. The dam construction was started in 1978 and completed in 2006. According to
Figure 11, Bansagar reservoir water storage kept increasing in 2011 until the fall season. Following the sud-
den water release into the Sone river (from the reservoir) and the heavy rainfall in its downstream area, sev-
eral villages in the Rohtas, Arwal, Patna, Aurangabad, and Bhojpur districts were reportedly inundated
(‘‘Flood alert sounded in Bihar’’ from The Hindu, http://www.thehindu.com/todays-paper/tp-national/tp-new-
delhi/flood-alert-sounded-in-bihar/article2489034.ece, 2011, media report).

The upper drainage basin of the Mahanadi River is characterized by periodic droughts, which is a contrast
to the lower delta region where floods are common. The Hirakud reservoir was constructed to help alleviate
these problems by regulating river flows. The reservoir also produces hydroelectricity through several
hydroelectric plants. In 2000, the region suffered from historic drought, which is effectively reflected by the
low storage values (Figure 11). Although the reservoir storage is directly affected by inflows, the operation
rules play an important role in regulating the storage. It was reported that Hirakud kept the water level
higher than the recommended value in 2008. When inflows increased suddenly, the Hirakud released water
(in order to protect the dam) which led to a man-made flood in the downstream area [Choudhury et al.,
2012]. Although 2009 and 2010 were two dry years, the Hirakud reservoir peak storage was maintained at
about 70% of capacity. When heavy precipitation occurred in September 2011, the mismanagement of the
Hirakud reservoir caused avoidable flooding [Choudhury et al., 2012].

5. Summary and Conclusions

In this study, a remotely sensed reservoir data set in South Asia, which includes elevation, area, and stor-
age information, was generated using a novel multisatellite algorithm. First, the MODIS-derived water
classifications and ICESat/GLAS data (when available) were used to create an area-elevation relationship
for each of the 21 selected reservoirs. Next, the elevation and storage variations were estimated over the
period of 2000–2012 using the MODIS-based surface area time series and the area-elevation relationships.
The ICESat/GLAS has a much higher spatial resolution (70 m) than the satellite radar altimetry data (sev-
eral kilometers), which allows it to measure much smaller reservoirs. However, in the past, its short life-
time (2003–2010) and low repeat frequency (91 days) had limited the capability of ICESat/GLAS with
regards to monitoring lakes and reservoirs. By combining MODIS and ICESat/GLAS for reservoir storage
estimations, we were able to take the advantage of both satellites. Furthermore, this satellite-based reser-
voir data set was validated by both high-resolution Landsat ETM1 classifications and gauge observations
over five locations. Last, we also conducted uncertainty analysis for the remotely sensed storage estima-
tions. Specifically, we investigated the uncertainty of storage associated with two factors: the surface area
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classification parameterizations and the ICESat/GLAS elevation measurements. The conclusions of this
study are summarized as follows:

1. The postclassification image enhancement procedure significantly improved the MODIS water area esti-
mation accuracy, which is essential for the area driven (versus elevation driven) storage estimation algo-
rithm used in this study.

2. By using MODIS area estimations and ICESat elevations to derive the reservoir area-elevation relationship,
the retrieval algorithm developed in this study has the potential to be applied to other regions where res-
ervoir storage information is hard to acquire and radar altimetry observations are few.

3. Uncertainty analysis results suggest that the uncertainties associated with the area algorithm parameter
selections are larger than those due to elevation measurements. Nonetheless, the uncertainties are less
than 10% in all cases.

4. Considering the abundance of transboundary rivers in this region, this reservoir storage data set can
serve as a valuable data source for water resources management purposes, such as hydropower genera-
tion, irrigation water supply allocations, and disaster mitigations. By incorporating remotely sensed reser-
voir storage information into hydrological modeling, better model prediction skills are expected (false
alarms can be avoided).

5. The remote sensing-based reservoir storage estimation algorithm from this study is general and transfera-
ble to global applications for lakes and reservoirs. The data set can be used for improving the representa-
tion of water resources management in Earth System Modeling, for incorporating lakes into weather
forecasting models and climate models, and for addressing human interferences to regional hydrologic
processes.

Although this storage data set represent 28% of the integrated reservoir capacity in South Asia—
which is first of its kind to the best of our knowledge—observations over more reservoirs would be
highly valuable for this region (with its dense river networks). Unfortunately, due to the relatively
sparse orbital coverage of ICESat/GLAS and the relatively coarse spatial resolution of MODIS, the reser-
voirs were limited to what was presented by this study. With the launch of the ICESat2 mission in
2016 and the Surface Water and Ocean Topography (SWOT) mission in 2019, both of which feature
higher-resolution altimeters, a significantly greater number of reservoirs will be able to be studied
over an extended time period (beginning when MODIS data was first available) using the techniques
developed in this study.
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