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Abstract: Tropical reservoirs are critical infrastructure for managing drinking and irrigation water
and generating hydroelectric power. However, long-term spaceborne monitoring of reservoir storage
is challenged by data scarcity from near-persistent cloud cover and drought, which may reduce
volumes below those in the observational record. In evaluating our ability to accurately monitor
long-term reservoir volume dynamics using spaceborne data and overcome such observational
challenges, we integrated optical, lidar, and radar time series to estimate reservoir volume dynamics
across 13 reservoirs in eastern Brazil over a 12-year (2003—2014) period affected by historic drought.
We (i) used 1560 Landsat images to measure reservoir surface area; (ii) built reservoir-specific
regression models relating surface area and elevation from ICESat GLAS and Envisat RA-2 data; (iii)
modeled volume changes for each reservoir; and (iv) compared modeled and in situ reservoir volume
changes. Regression models had high goodness-of-fit (median RMSE = 0.89 m and r = 0.88) across
reservoirs. Even though 88% of an average reservoir’s volume time series was based on modeled
area—elevation relationships, we found exceptional agreement (RMSE = 0.31 km? and r = 0.95) with
in situ volume time series, and accurately captured seasonal recharge/depletion dynamics and
the drought’s prolonged drawdown. Disagreements in volume dynamics were neither driven by
wet/dry season conditions nor reservoir capacity, indicating analytical efficacy across a range of
monitoring scenarios.

Keywords: reservoir volume; clouds; Envisat; ICESat; time series

1. Introduction

Reservoirs are critical global infrastructure that occupy at least 26 x 10* km? (0.2%) of global land
surface area and contribute 6 x 10% km? (0.0004%) of global freshwater storage [1]. The freshwater
held by reservoirs is essential for meeting global demand for drinking water, irrigation water for
agriculture [2,3], and hydroelectric power generation [4]. Recent research has identified the dual roles
of reservoirs in atmospheric carbon dynamics being large-scale sites of both carbon sequestration
as well as greenhouse gas emission [5-11]. Tropical reservoirs only make up 15% (1040) of the
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6824 Global Reservoir and Dam (GRanD) Database reservoirs [12] but play a relatively outsized role
in atmospheric carbon flux compared to temperate reservoirs [13-18]. Consistent, systematic, and
long-term monitoring of reservoir storage throughout drought as well as high precipitation periods is
essential to understanding the role of tropical reservoirs on society and environment [8,16]).

Reservoir storage is temporally dynamic and satellite remote sensing time series from optical
(e.g., Landsat, MODIS, Sentinel-2) and radar or lidar (e.g., Envisat, GLAS/ICESat) systems support
systematic monitoring of changes in reservoir volume at low cost per reservoir [19-27]. Spaceborne
observation of reservoir dynamics are especially valuable for geographically remote or high-elevation
reservoirs where consistent and long-term monitoring are a challenge, or in regions where the cost of
constructing or maintaining a hydrologic gauge network is prohibitively expensive [28-30]. However,
optical remote sensing of tropical reservoir dynamics is complicated by persistent cloud cover [31-33].
Indeed, as shown in Figure 1, the 178 Brazilian reservoirs included in GRanD are on average obscured
by clouds 54% of days between 2003 and 2014.
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Figure 1. Global distribution of Global Reservoir and Dam (GRanD) Database reservoirs [12].
Reservoir counts are summarized at 5° resolution), and percent daily cloud cover is based on MODIS
MODO09GA [34] (2003-2014, 1 km resolution, Robinson projection).

In addition to the challenges of persistent cloud cover, monitoring long-term tropical reservoir
dynamics is complicated by sensor spatial resolution, satellite revisit period, and, in some cases,
a limited observational record. MODIS has regularly been used to monitor reservoir dynamics at
sub-monthly time scales (e.g., [23,25,35]). While spectral unmixing of MODIS imagery has been
effective at measuring sub-pixel fractional water area [36,37], the relatively coarse 250 m spatial
resolution impedes detection of the reservoir edge and quantification of fine-scale surface area
changes (e.g., [38]) with heightened consequences for reservoirs with shallow sloped near-surface
bathymetry [25]. Landsat’s 30 m spatial resolution, over 40 years of global coverage makes it well
suited for long-term, high spatial resolution monitoring of reservoir surface water dynamics [39-43].
Unfortunately, Landsat’s 16-day revisit period limits the opportunities to mitigate cloud cover or haze
compared to 8- or 16-day MODIS temporal composites [44], which further restricts opportunities for
pairing surface area estimates with concurrent altimetry elevation observations. While spaceborne
radar is broadly robust to atmospheric effects, altimeters on TOPEX/Poseidon and Jason-1, 2, and 3
satellites with 3-10 km spatial resolutions are not well suited for monitoring smaller reservoirs [45,46].
More recent platforms such as and Cryosat-2 and Sentinel 3 have higher spatial resolution but lack
long-term coverage [24,47,48]. However, Envisat RA-2 (Radar Altimeter 2) radar (2002-2012) and
ICESat GLAS (Geoscience Laser Altimeter System) lidar (2003-2010) altimeters lend themselves
to reservoir monitoring applications given their sub-kilometer resolution and many years of
coverage [28,35,49-52].
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Using a case study of 13 reservoirs in eastern Brazil, the goal of this study is to accurately model
tropical reservoir volume dynamics from 2003 to 2014 despite near-persistent cloud cover and reservoir
depletion due to a historic drought in 2014. To achieve our goal, we estimated surface area and
elevation across study reservoirs by integrating Landsat, Envisat RA-2, and ICESat GLAS time series,
modeling surface area—elevation relationship, calculating volume changes over the study period, and
assessing agreement between modeled and in situ volume time series data per date, month, and year
with attention to differences in agreement before and during the drought.

2. Materials and Methods

2.1. Study Area

Brazil is the largest (8.5 million km?) and most populous country (approximately 209 million
residents in 2017) in South America. The country is dominated by tropical rain forest in its west and
north, has tropical semideciduous forest along its southeastern Atlantic coast with tropical savannas
(cerrado) stretching between the Brazilian Highlands to the Mato Grosso Plateau, and is home to
major urban population centers including Sao Paulo, Rio de Janeiro, and the capital, Brasilia, in the
eastern half of the country. Brazil has the largest reserve of renewable surface water in the world,
approximately 32% of which is used for agricultural production [53]. Beginning in 2012, changing
atmospheric circulation patterns, declining rainfall, and increased temperatures culminated in the
summer of 2014 being the warmest and driest since 1951 [54] and a series of historically intense
droughts that parched extensive cropland, dwindled drinking water supply, and shrank Brazil’s rivers
and reservoirs [55,56].

During the peak of the drought in the summer of 2014, national hydroelectric production declined
by approximately 20% compared to average 2000-2010 levels, and the Cantareira reservoir system
relied upon by Sao Paulo saw nearly 11% reduction in its total capacity [53]. Over half of Brazil’s
largest reservoirs (by hydroelectric production) are located in the drought-affected eastern region of
the country. Thirteen reservoirs were included in this study that span southeast Brazil (Figure 2) with
at least three dates of observation between Envisat and GLAS. Four study reservoirs-Agua Vermelha,
Furnas, Marimbondo, and Tres Marias—with a range in nominal storage capacity from 1.3 to 34.1 km3
and a diversity of inter-annual storage dynamics were selected for focused data presentation below
with the remaining reservoirs’ data included in the Appendix A.
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Figure 2. Geographic distribution and storage capacities (km?) of study reservoirs in eastern Brazil [12].
Four focus reservoirs whose volume dynamics are illustrated in the manuscript text are identified with
a black point on the map and an asterisk (*) in the reservoir list; all reservoirs” dynamics are illustrated
in Appendix A.
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2.2. Modeling Framework

The volumetric modeling framework (Figure 3) for a given reservoir comprised five main
objectives: (1) generate reservoir surface area time series; (2) generate surface elevation time series;
(3) build and apply a linear regression model relating surface area and elevation; (4) estimate volumetric
change over the study period; and (5) assess agreement between modeled and in situ volumes.
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Figure 3. Overview of analytical framework to generate surface area, elevation, and volumetric time
series for a given reservoir. Colors shown for each dataset are consistent throughout all figures.

2.3. Surface Area Time Series Generation

The 13 study reservoirs collectively span 15 Landsat WRS-2 path-row footprints, with three
reservoirs stretching across 2—4 footprints, respectively. A total of 1460 Landsat 5, 7, and 8 surface
reflectance (SR)-corrected scenes with 20% or less cloud cover were collected from 2003 through
2014; this cloud cover threshold reduced the likelihood of missing data due to cloud cover while
still supporting an intra-annually dense time series. We measured surface water time series with
the commonly used Modified Normalized Difference Water Index (MNDWI), which is effective at
discriminating water from non-water features [57]. We included all pixels that have a MDWI value
larger than 0.1 as ‘water’ for each image date. Missing pixels associated with clouds, shadows, and
Landsat 7’s Scan Line Corrector (SLC) Error data gaps were identified and removed using Landsat’s
CFmask product. For each image’s missing pixels, pixels from images collected within a 36-day
window before/after (e.g., Figure 4a—c) were infilled into the image, prioritized by the nearest date of
observation (e.g., Figure 4d). Infilling using a 36-day temporal window ensured inclusion of images
from up to two along-track (every 16 days) and up to four across-track (7 or 9 days) observations and
reduced the amount of missing data within an average reservoir from 8.6% to 1.2% (Figure 5). On some
dates, an image’s missing pixels could not be directly infilled through temporal compositing; in this
case, if these missing pixels were in locations classified as ‘water” on at least the median frequency
for a given reservoir, the missing pixels were automatically included in the surface water extent.
A reservoir’s water frequency map showing the total number of days when ‘water” was detected
(Figure 4e) was also used to generate a consistent spatial extent within which surface water area was
measured: pixels classified as ‘water” on at least two dates made up an ‘ever-water” envelope for
this purpose (shown in Figure 4). Finally, each reservoir’s surface area time series was clipped by
an integrated (i.e., upstream to dam wall) reservoir region that was visually interpreted using very
high-resolution imagery hosted by Google Earth.
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Figure 4. Example generation of temporally composited, infilled surface water extent maps showing
southeastern Chavantes reservoir. (a—c) Surface water coverage from three near-date images (23 October,
8 November, and 24 November 2012) with data gaps. (d) Coverage maps are composited to create an
infilled surface water map for 8 November 2012. (e) A time series of infilled water maps are used to
generate a water frequency map for 2003-2014.
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Figure 5. Reductions in average percentage of missing data across all image dates and reservoirs
after infilling.

2.4. Surface Elevation Time Series Generation

Separate surface water elevation time series were built using Envisat RA-2 (2002-2010) and ICESat
GLAS (2003-2009) altimetry data, respectively. The long wavelength of Envisat’s RA-2 (Ku-band)
radar altimetry provides resilience to cloud cover effects while the vertical profiling capabilities of
ICESat’s GLAS support the discrimination of ground-level conditions in all but the densest cloud
cover [31,58]. Both RA-2 and GLAS datasets are suitable for reservoir monitoring with along-track
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sampling distances of approximately 350 and 172 m, nominal footprint sizes of approximately 2 km
and 70 m, and vertical accuracies (i.e., RMSE) of approximately 50 and 15 cm [59], respectively. Envisat
altimetry has often been used for measuring freshwater surface elevation changes (e.g., [60-67] though
ICESat has been used less often for monitoring surface water dynamics due to its erratic operational
history of premature laser failures see [68] with notable exceptions (e.g., [69-73]).

The Envisat RA-2 surface elevation time series was generated using an automated return clustering
algorithm detailed in [74], which yielded an average RMSE of 48.9 cm compared to in situ gauge
observation data across study reservoirs. ICESat GLAS GLA14 product (Level-2 Global Land Surface
Altimetry; [75]) data were filtered to single Gaussian peak returns typical of surface water, saturated
returns were corrected or removed using the saturation index, and surface elevation was calculated at
the centroid of the single Gaussian peak. All RA-2 and GLAS surface returns collected within 15 days
of a Landsat surface area measurement were spatially filtered by the surface area perimeter buffered
inwards by 100 m to eliminate potential measurement of near-surface topography. The median
elevation over a reservoir’s extent on a given date was measured and used to generate reservoir
elevation and volume time series. Since GLAS’ reference ellipsoid (equatorial radius = 6378.1363 km;
flattening coefficient = 1/298.257) is offset 70 cm from RA-2's WGS 84 ellipsoid, GLAS elevation data
were adjusted to fit the WGS 84 vertical datum following [76].

2.5. Surface Area—Elevation Model Generation

Surface area and elevation time series were used to estimate changes in reservoir volumes.
However, since the vast majority of surface area measurements lacked same-day measurements of
surface elevation, regression models were built for each reservoir to relate surface area measurements
to altimeter elevations collected within 15 days of the surface area measurement; linear regression
was used following successful regional application (e.g., [23,25,49]). Modeled surface elevation values
based on measured surface areas were used to build an elevation time series with the same temporal
sampling as the surface area time series. The goodness-of-fit of each reservoir’s area-elevation model
was measured using the Pearson correlation coefficient (r) and the root mean square error (RMSE).

2.6. Volume Time Series Generation

As the volume of a reservoir with unknown bathymetry cannot be remotely measured,
the reservoir was rather conceived as a circular cone with a series of water layers as detailed in [77].
Reservoir volume on a given date, ¢, was based on changes in surface area and elevation time series
data measured relative to the median 2003-2011 volume (before the drought):

1
Vmedft = g(zt - Zmed) * (Amed + A+ (Amed * At)) (1)

where, V.4 represents the relative difference in volume, A,,.; and A; and z,,.; and z; represent surface
areas and elevations based on median 2003-2011 values and the date of observation, respectively.
The median 2003-2011 in situ volume was measured for each reservoir to serve as a pre-drought
baseline, and the relative volume difference for each date of in situ observation was measured.

2.7. Comparison between In Situ and Modeled Volumetric Time Series

Changes in modeled reservoir volumes were compared to a median 4383 daily in situ reservoir
volume measurements collected from 2003-2014 by the Brazilian Electric Sector available at http:
//www.ons.org.br/. However, study reservoir boundaries deviated from (unavailable) management
boundaries used by the Brazilian Electric Sector to collect in situ volume and modeled and in situ
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volume time series could not be directly compared. To mitigate this disparity, both time series were
standardized to preserve relative variations with the following equation:

(Vi V)

St = @)
where S; and V; are standardized and modeled volume changes for a given reservoir on date, ¢,
respectively, and V and o are the mean and standard deviation of modeled volume changes over the
full time series, respectively. Using standardized (unitless) values, the agreement between modeled
and in situ volume dynamics time series were assessed using linear regression, r, and RMSE, and
annual and monthly agreement between modeled and in situ data were evaluated.

3. Results

3.1. Surface Area and Elevation Time Series

Over the 12-year study period, a median 216 Landsat image dates were used to generate each
reservoir surface area time series (Figures 6 and A1). Prior to the drought’s intensification in 2014,
reservoirs typically reached their lowest extent in December or January before recharging to the
maximum surface area between March and June following the end of the rainy season. Surface water
expansion and contraction was highly dynamic with a median annual range (i.e., difference between
maximum and minimum) of reservoir surface areas representing 31.3% of the maximum surface
area in the pre-drought 2003-2011 period. During the drought period (2012-2014), this range was
nominally consistent at 30.7% though the minimum and maximum surface areas declined relative
to the pre-drought period by median 4.5% and 3.6%, respectively. Seasonal dynamics shifted under
the drought, as well, as early year recharge was typically reduced in 2012 and 2013 and absent by
2014. Reservoirs such as Furnas and Tres Marias contracted during the drought so much that low

surface areas (below 900 km? and 350 km?, respectively) were without precedent in the pre-drought
time series.
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Figure 6. Landsat-derived surface area time series for four reservoirs with dates of ICESat GLAS
(green dot) and Envisat RA-2 (red dot) measurement. The gray background indicates the range of
surface areas measured on altimetry data collection dates. Time series for all 13 reservoirs are shown in
Figure Al.
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While each reservoir’s seasonal dynamics are apparent, there was often a disproportionate
exclusion of cloudy wet season imagery (October-March; Figures 7a and A2). Conversely, since
cloud-free observations are more likely in eastern Brazil during winter months, there is a relative
abundance of imagery available in July and August when reservoirs tend to be near capacity. Fewer
images and generally more cloud cover during the wet season meant fewer near-date images for
infilling and compositing, which may yield a larger amount of residual missing data and low biased
surface area estimates [33], as well as fewer surface area measurements with which to couple elevation
data. While the collection of surface elevation values was not affected by atmospheric conditions in
the same way as surface area measurements, having a larger surface area (unobstructed by clouds)
meant that more altimetric returns could be collected over the reservoir body (Figures 7b and A3).
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Figure 7. Monthly frequency of (a) Landsat images and (b) GLAS and RA-2 surface elevation
observations for four selected reservoirs from 2003-2014. Monthly frequency of Landsat images
and surface elevation observations for all 13 reservoirs are shown in Figures A2 and A3, respectively.

3.2. Modeled Surface Area—Elevation Relationships

Linear regression models relating Landsat-derived surface area and altimeter-derived surface
elevation measurements were built for the 13 study reservoirs (Figures 8 and A4). The median number
of area—elevation pairs for “combined” regression models was 21, with 13 and 17 measurements for
GLAS- and RA-2-specific models, respectively. Combined linear models showed high goodness-of-fit
with a median RMSE of 0.89 m and r of 0.88 across reservoirs. A poor model may reflect a combination
of seasonal variation in surface area and elevation, differences in Landsat and altimetry acquisition
dates, variation in bathymetric slope along a reservoir’s perimeter and across its depth, as well as
lingering cloud cover effects. Though GLAS and RA-2 elevations span a median 74.9% of reservoir
surface area range (highlighted in grey in Figures 6 and A1), the elevation distribution is often skewed
towards including higher elevations. This skew is most pronounced for reservoirs with fewer dates of
observation during the wet season as well as those with a smaller surface area, which limits the area
within which altimetry data could be collected. The contraction of surface areas during the drought
also limited potential for coupling surface area-elevation values as very low surface areas during the
drought had no paired elevation values.
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Figure 8. Derived surface area—elevation linear regressions for four selected reservoirs based on
Landsat surface area and combined GLAS and RA-2 elevation data. n = number of area—elevation pairs,
r = Pearson correlation coefficient, RMSE = root mean square error, m = linear slope, and b = linear
intercept. Area-elevation models for all 13 reservoirs are in Figure A4.

GLAS-specific models provided a slightly better fit with median RMSE = 0.68 m and r = 0.94
compared to RA-2’s RMSE = 0.94 m and r = 0.90 (see Table A1). The better fit provided by GLAS
is expected given its higher vertical accuracy and smaller footprint. For the 8 of 11 reservoirs with
both GLAS and RA-2 coverage over the study period, GLAS also captured a larger surface area range
despite GLAS having fewer samples for these reservoirs (see Figure A4). Further, GLAS alone provided
coverage for two reservoirs, Ilha Solteira and Sao Simao. Despite the driving role of GLAS data in
shaping surface area—elevation models, there remains considerable value in combining altimeter
measurements into a single area—elevation model. Since GLAS and RA-2 captured reservoirs at
different stages over the time series, combining altimetric observations in a single model expanded
the seasonality of coverage, which helped compensate for irregularity of observations at a given
reservoir. Combining altimetric data also increased the average range of observed surface elevations
across reservoirs by at least 1.3 m compared to the elevation range observed by either GLAS or RA-2
alone. This expanded range supports characterizing reservoir dynamics from the drawdown through
recharge conditions, which is especially valuable for reservoirs with a large annual range, e.g., Agua
Vermelha. 3.3. Volume Time Series and In Situ Comparison.

Across reservoirs, the median modeled volume time series is composed of 216 time steps
(Figures 9a and Aba). Of these, 88% of time series values were based on reservoir-specific surface
area—elevation regression models (i.e., Figure 8) while the remaining 12% were based on direct
observations. While some reservoirs such as Agua Vermelha have a clear, consistent seasonality
with a pronounced annual recharge and depletion, other reservoirs such as Chavantes or Sao Simao
(see Figure A5) are much less dynamic. Linear regression models showed exceptionally high agreement
between modeled and in situ volumetric changes with median RMSE = 0.31 km? and r = 0.95 (Figure 9b).
The low median bias of 0.11 km? indicates an underestimation of in situ volume, and, indeed, each
reservoir’s maximum modeled volume was consistently less than the maximum in situ volume.
This divergence likely results from the mismatch between reservoir boundaries used to generate
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modeled values and boundaries considered in in situ data collection, differing 2003—2011 reference
volumes, and spuriously low modeled volumes that most often occur during the wet season.
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Figure 9. (a) Time series of difference between standardized reservoir volumes and each reservoir’s
baseline, pre-drought (i.e., median 2003-2011) volume for modeled (purple) and in situ (green) data,
respectively; for dates without altimetry data, regression-based elevation values are used in modeling
volume. (b) Linear regressions relating standardized in situ and modeled volumes on dates of mutual
observation. Light grey lines in (a) and (b) indicate zero values on respective axes. All volume values
are in km3. Time series and regressions for all 13 reservoirs are in Figure A5.

To examine intra-annual variation in agreement, the mean absolute difference between modeled
and in situ volumetric change was estimated for each month (Figures 10 and A6). Wet season
months (October-March) showed higher disagreement than winter months (July—August) in 5 of
13 study reservoirs. Since reservoirs tend to have their lowest volumes during wet months of
November—January, accurately modeling reservoir volumes during these low volume months would
improve modeling of anomalously low volumes during drought periods. Considering inter-annual
variation, the mean annual flux (i.e., the range of standardized volumes within a calendar year) of
modeled and in situ time series only differed between 0.004 and 0.041 in 2003-2010 across reservoirs
(Figure 11). With the drought came a larger disagreement of 0.62 in 2012 but was reduced to a very low
disagreement of only 0.04 in 2014. The divergence between modeled and in situ flux in 2011-2013 was
likely influenced by fewer Landsat images being collected after Landsat 5 operational imaging ended in
November 2011, 17 months before Landsat 8's operational imaging began in April 2013. The agreement
in 2014 benefitted from Landsat 8’s data collection, a low annual flux due to the drought, and good
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fitting area—elevation regression models that allowed for estimating elevations beyond the range of
historical direct observation.
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Figure 10. Mean monthly absolute difference between modeled and in situ standardized (unitless)
volume changes (2003-2014; red line) with standard deviation range (red field). Monthly comparisons
for all 13 reservoirs are in Figure A6.
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Figure 11. Comparison between mean annual flux of standardized (unitless) modeled (purple line)
and in situ (green line) volume dynamics across all study reservoirs with 1 standard deviation ranges
(purple and green fields, respectively).

4. Discussion

Accurate long-term monitoring of reservoir dynamics achieved by this study is of paramount
interest for assessing United Nations Development Program Sustainable Development Goal (SDG) 6
(Clean Water and Sanitation) and 7 (Affordable and Clean Energy) [78], managing national-level water
resources, examining reservoir dynamics and hydroelectric power generation (e.g., [3]), assessing the
impact of changing precipitation and temperature regimes on reservoir storage [54,56,79,80], and as
input to or validation of hydrodynamic models (e.g., [81-83]. This study’s high agreement between
remote sensing and in situ volumetric flux (i.e., RMSE = 0.31 km3) illustrates the potential for effective
monitoring in tropical regions with persistent cloud cover or even those affected by historic drought.

Volumetric modeling is an essential tool in monitoring climate effects on global surface water
dynamics especially in regions with unavailable or scarce in situ data [43]. This study builds on
research by [19,20,22-25,65,84,85] in pursuing remote sensing-based estimation of reservoir volume
dynamics. However, this research alongside [49] extends previous efforts by maintaining high accuracy
in modeled volume changes outside the historical range of altimetric observations, in this case due to
historic drought. Though the drought began in 2012, the reduction of reservoir surface areas, elevations,
and volumes was broadly delayed across study reservoirs until 2013 as is evident in modeled and in
situ volumetric change time series (e.g., Figure A5). In 2013, surface elevations at eight of the study
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reservoirs fell below the observed minimum surface elevation from 2000-2009; by 2014, 12 of the 13
study reservoirs had done so. Despite extrapolating surface area—elevation relationships to capture
volumetric change in 2013-2014, the mean standardized modeled and in situ volumetric fluxes (e.g.,
Figure 11) were in agreement, thereby demonstrating the effectiveness of monitoring. Volume estimate
accuracies for Tres Marias, Marimbondo, and others are comparable to those achieved by [19] (i.e.,
r = 0.99) despite this study’s challenges of persistent cloud cover and extreme volumetric loss.

Limited observational frequency remained a challenge in this study. The largest difference
between mean annual standardized modeled and in situ volumetric fluxes was 0.62 (unitless) and
measured in 2012. This did not result from drought-induced depletion but was rather associated with
reduced surface area measurements since only Landsat 7 was operational in 2012. Nonetheless, despite
intra-annual variability of surface area measurements, limited observational data, and drought-induced
depletion of reservoir volume beyond the range of observations, agreement between modeled and in
situ volume dynamics was high. This is perhaps best exemplified by Tres Marias, which lacked any
altimetry observations for six months of the calendar year yet shows better agreement with in situ
volume data (i.e., RMSE = 0.14 km3) than any other reservoir. Future volumetric modeling efforts will
benefit from the increased observational frequency by including additional surface area time series
from Sentinel-1, Sentinel-2, as well as the upcoming Surface Water and Ocean Topography (SWOT)
mission [86]. Similarly, while no current hydrodynamic models accurately simulates reservoirs and
lakes, recent developments on hydrological modeling have taken into account reservoir operation
(e.g., [87-89]). Results presented in this study can therefore be used for further model evaluation and
improvement of model parameters to better model human activities.

Errors inherent to the volumetric modeling approach include Landsat-derived surface area
resolution, altimetry-derived vertical resolution, area—elevation linear regression modeling, and
unavailable reservoir boundaries used for in situ data collection. Moreover, referencing the median
water frequency coverage for infilling remaining pixels that could not be directly infilled with
temporal compositing lead to overestimating surface area and volume on low volume days and
underestimating surface area and volume on high volume days; this, in turn, degraded surface
area-elevation correlations. While a linear area—elevation relationship that assumes a consistent
bathymetric (i.e., hypsographic) profile across all depths and along the entire boundary of a given
shoreline has been used effectively by other researchers (e.g., [23]), non-linear models have also been
used to model sections or the entirety of a reservoir’s hypsographic profile (e.g., [36,85]). A more
extensive examination of the relationship between reservoir dynamics and bathymetry would have
added valuable information. Unfortunately, there were no available reference bathymetry datasets
with which to evaluate this relationship, nor were there surface area validation time series data with
which to evaluate the accuracy of surface area dynamics for any reservoir in the study. Including
information from a high-resolution bathymetric model would have improved volumetric modeling
effort [84].

There are several opportunities for improving the water classification through use of a more
advanced classification approach sensitive to reservoir-specific hydrologic conditions such as clarity,
turbidity, and bathymetry, e.g., [90]. The results of this study point towards more effective monitoring
using recently launched sensors such as Sentinel 1 and 2 [91-93]. The use of 20 m spatial resolution
Sentinel 2A and 2B time series data with a nominal 5-day temporal resolution rather than 30 m, 16-day
repeat Landsat data have the potential to estimate much more detailed volumetric changes, especially
for reservoirs with complex shorelines that cannot be readily captured with Landsat, let alone MODIS
imagery. Use of imaging radars such Sentinel 1, SWOT, and RADARSAT-2 [94] with <100 m horizontal
resolution and <10 cm vertical resolution as well as passive microwave sensors [95] offer data fusion
opportunities that make the most of available optical and passive time series data.
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5. Conclusions

This study presented a remote sensing-based approach for monitoring reservoir dynamics over a
12-year period (2003-2014), which included a historic two-year long drought. Using the case study of
regularly clouded eastern Brazil, Landsat 5, 7, 8, ICESat GLAS, and Envisat RA-2 time series data were
used to measure surface area, elevation, and volume time series for 13 study reservoirs of varying
size and intra- and inter-annual dynamics. Volumetric changes have high overall agreement with in
situ volumetric time series data as well as intra- and inter-annual agreement throughout the study
period including the drought. The high agreement despite regular cloud obfuscation and drought
depletion points the way towards routine, very high-resolution monitoring of reservoir dynamics in
regions that lack existing or available in situ monitoring. While this study benefits from reservoir
management data, anticipated applications extend to regularly clouded regions without existing or
otherwise inaccessible data on reservoir dynamics.
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Figure Al. Landsat-derived surface area time series for all 13 study reservoirs with dates of ICESat

GLAS (green dot) and Envisat RA-2 (red dot) measurement. The gray background indicates the range

of surface areas measured on altimetry data collection dates. Time series for select four reservoirs are
shown in Figure 6.
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Figure A2. Stacked monthly frequency of Landsat images for all 13 study reservoirs. Monthly frequency

information for four selected reservoirs is in Figure 7.
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Figure A3. Stacked monthly frequency of GLAS and RA-2 surface elevation observations for all
13 study reservoirs. Monthly frequency information for four selected reservoirs is in Figure 7.
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Figure A4. Derived surface area—elevation linear regressions for all 13 study reservoirs based on
Landsat surface area and combined GLAS and RA-2 elevation data. n = number of area—elevation pairs,
r = Pearson correlation coefficient, RMSE = root mean square error, m = linear slope, and b = linear
intercept. Area—elevation models for select four reservoirs are in Figure 8.
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Table A1l. List of reservoir-specific linear regression model parameters and goodness-of-fit values for
GLAS- or RA-2-specific models as well as ‘combined’” models. n = number of altimeter surface elevation
measurements, m = linear slope, b = linear intercept, r = Pearson correlation coefficient, and RMSE =
root mean square error.

Reservoir Name Altimeter n m b r RMSE

GLAS 20 0.070 339.10 0.933 1.054
Agua Vermelha RA-2 42 0.054 347.03 0.777 1.055
combined 62 0.062 343.01 0.867 1.088
GLAS 13 0.109 419.13 0.884 0.683
Barra Bonita RA-2 2 0.097 422.63 0.839 0.745
combined 15 0.100 421.21 0.855 0.710
GLAS 19 0.063 295.13 0.937 0.864
Capivara RA-2 32 0.075 288.46 0.773 0.979
combined 51 0.064 294.41 0.862 0.982
GLAS 9 0.077 443.26 0.548 0.799
Chavantes RA-2 12 0.087 439.30 0.681 0.902
combined 21 0.082 441.21 0.622 0.887

GLAS 0 - - - -
Emborcacao RA-2 17 0.074 615.69 0.951 1.534
combined 17 0.074 615.69 0.951 1.534
GLAS 15 0.024 730.67 0.921 0.567
Furnas RA-2 7 0.038 712.25 0.863 0.559
combined 22 0.024 731.00 0.883 0.641
GLAS 16 0.039 275.78 0.863 0.362

Ilha Solteira RA-2 0 - - _ _
combined 16 0.039 275.78 0.863 0.362
GLAS 16 0.054 471.90 0.977 0.861
Itumbira RA-2 45 0.045 478.62 0.840 1.994
combined 61 0.048 476.73 0.872 1.869
GLAS 10 0.127 398.20 0.985 0.504
Marimbondo RA-2 35 0.102 405.62 0.954 0.995
combined 45 0.106 404.51 0.958 0.947
GLAS 8 0.129 757.66 0.968 1.210
Nova Ponte RA-2 24 0.113 762.89 0.942 0.887
combined 32 0.119 760.86 0.952 1.028
GLAS 13 0.057 358.41 0.955 0.612

Sao Simao RA-2 0 - - _ _
combined 13 0.057 358.41 0.955 0.612
GLAS 10 0.004 364.81 0.963 0.544
Sobradinho RA-2 5 0.003 367.01 0.974 0.370
combined 15 0.004 366.13 0.925 0.729
GLAS 2 0.029 535.31 0.963 0.743
Tres Marias RA-2 7 0.029 533.10 0.977 0.658

combined 9 0.028 534.18 0.964 0.719
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Figure A5. (a) Time series of difference between standardized reservoir volumes and each reservoir’s
baseline, pre-drought (i.e., median 2003-2011) volume for modeled (purple) and in situ (green) data,
respectively; for dates without altimetry data, regression-based elevation values are used in modeling
volume. (b) Linear regressions relating standardized in situ and modeled volumes on dates of mutual
observation. Light grey lines in (a) and (b) indicate zero values on respective axes. All volume values
are in km®. Time series and regressions for four select reservoirs are in Figure 9.



Remote Sens. 2019, 11, 827 19 of 24

modeled - in situ Avolume

Agua Vermelha Itumbira Capivara Marimbondo
1.5 1.5 1.5 1.5
1.0 4 1.0 4 1.0 1 1.0
0'5-/\’\/ 0.5-w 0.5_/\\/\_\/ 0.5_/\/\/
0.0 +—+—V—r—r—rr7+7r7m—1+ 00-+-+—VTrTrT7T 7T T T T+ 00+t TrTTrrrrrr—r+r O00-‘YTTTrTrTTTT
JFMAMJ JASOND JFMAMJ JASOND JFMAMJ JASOND JFMAMJ JASOND
Nova Ponte Furnas Chavantes Emborcacao
1.5 1.5 1.5 1.5
1.0 4 /—\/\J 1.0 4 1.0 1 1.0
0.5 1 0.5 0.5-\/\_/\ 0,5_/U
o-ollllllllllll O-OIIIIIIIIIIII O-Ollllllllllll O-Ollllllllllll
JFMAMJ JASOND JFMAMJ JASOND JFMAMJ JASOND JFMAMJ JASOND
Ilha Solteira Sobradinho Barra Bonita Sao Simao
15 4.5 1.5 1.5
1.0 1 1.0 4 1.0 1.0
0.5 0.5 - 0.5-‘\’\/\/\ 05 -
0.0 4+—+—V—7+—r—7+—r7+7r7m—1+ O0O0+——TTrT7T T T T T+ 00+t TTrTTrTrTrTrT—rr 00 TTTrTTTTToTTo
JFMAMJ JASOND JFMAMJ JASOND JFMAMJ JASOND JFMAMJ JASOND
Tres Marias
1.5
1.0 1
0.5 1
0.0 L

JFMAMJ JASOND

Figure A6. Mean monthly absolute difference between modeled and in situ standardized (unitless)

volume changes (2003-2014; red line) with standard deviation range depicted (red field). Monthly

comparisons for four select study reservoirs are in Figure 10.
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