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RWemapped yearly (2000–2016) estimates of annual grass percent cover formuch of the sagebrush ecosystemof
the western United States using remotely sensed, climate, and geophysical data in regression-tree models. An-
nual grasses senesce and cure by early summer and then become beds of fine fuel that easily ignite and spread
fire through rangeland systems. Our annual maps estimate the extent of these fuels and can serve as a tool to as-
sist landmanagers and scientists in understanding the ecosystem’s response to weather variations, disturbances,
and management. Validating the time series of annual maps is important for determining the usefulness of the
data. To validate these maps, we compare Bureau of Land Management Assessment Inventory and Monitoring
(AIM) data to mapped estimates and use a leave-one-out spatial assessment technique that is effective for vali-
datingmaps that cover broad geographical extents.We hypothesize that the time series of annual maps exhibits
high spatiotemporal variability because precipitation is highly variable in arid and semiarid environments where
sagebrush is native, and invasive annual grasses respond to precipitation. The remotely sensed data that help
drive our regression-tree model effectively measures annual grasses’ response to precipitation. The mean abso-
lute error (MAE) rate varied depending on the validation data and technique used for comparison. The AIM
plot data and our maps had substantial spatial incongruence, but despite this, the MAE rate for the assessment
equaled 12.62%. The leave-one-out accuracy assessment had an MAE of 8.43%. We quantified bias, and bias
was more substantial at higher percent cover. These annual maps can help management identify actions that
may alleviate the current cycle of invasive grasses because it enables the assessment of the variability of annual
grass−percent cover distribution through space and time, as part of dynamic systems rather than static systems.
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Annual grass percent cover in the sagebrush ecosystem is highly var-
iable both interannually and spatially. After these grasses complete their
lifecycles each year, they become highly flammable and create beds of
fine fuel capable of spreading fire (Whisenant, 1990; Balch et al.,
2013). Because of the spatial and temporal variability of annual grasses,
the annual extent and potential impact of these beds of fuel over large
geographic areas are unknown without yearly maps that estimate an-
nual grass percent cover. We developed a satellite-based time series
(2000–2016) of maps that estimate annual grass percent cover in the
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g a Time Series of Annua
sagebrush ecosystem of the western United States and identify the ex-
tent of these beds of fuel. These maps can serve as a tool that helps
land managers and scientists understand the ecosystem’s response to
weather variations, disturbances, andmanagement in the context of an-
nual grass variability. This understanding can occur because annual
grasses are positively correlated with precipitation (Bradley and
Mustard, 2005; Pilliod et al., 2017), and the combined effect of fire and
grazing leads to reduced resistance to annual grass invasion through al-
tered dynamics of other biotic factors (Condon and Pyke, 2018). As an-
nual grass extents expand in sagebrush ecosystems, the associated
biodiversity loss and continuity of fine fuels results in grass-fire cycles
(Brooks et al., 2004) that increase the threat to adjacent sagebrush com-
munities, increase the danger to human-built structures, reduce air
quality, and compromise grazing and recreational resources. This new
fire regime induces the replacement of native plant species with inva-
sive plants (D'Antonio and Vitousek, 1992; D'Antonio, 2000; Brooks
et al., 2004),which causes the displacement ofwildlife species, reducing
their populations (Connelly et al., 2011). In the past 30 yr, wildfires have
caused more widespread damage in western ecosystems than occurred
erved.

l Grass Percent Cover in the Sagebrush Ecosystem, (2018), https://doi.
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under the historical fire regime (Connelly et al., 2011; Schoennagel
et al., 2017). Balch et al. (2013) determined that fire frequency, size,
and duration have increased substantially in areas infested with cheat-
grass, a dominant invasive annual grass in the sagebrush ecosystem.
With climate change and climate-driven vegetation change playing im-
portant roles in the potential transformation of fire regimes (Liu and
Wimberly, 2016), the lengthening of the fire season in the western
United States is likely. Kerns and Day (2017) discovered that in experi-
mental plots in the Blue Mountains ecoregion within the Malheur Na-
tional Forest, Oregon, autumn burns led to higher cover of cheatgrass
than areas that experience no burns (controls) or spring burns. These
findings make knowledge of the extent and magnitude of the annual
grass invasion essential, both its interannual and spatial variabilities, es-
pecially as endogenous and exogenous influences change. Therefore,
while validating the accuracy of a time series of annual grass−percent
cover maps with ground-truth data can be problematic, the validation is
important for determining data limitations.

In this study,we used 7-day best pixel composites of enhancedMod-
erate Resolution Imaging Spectroradiometer (eMODIS) normalized dif-
ference vegetation index (NDVI) data that were available weekly (the
eMODIS NDVI data are described in more detail in the Methods section
and can be downloaded at https://earthexplorer.usgs.gov/). Consistent
and frequent acquisitions of spatially explicit remotely sensed data
can mitigate some challenges of using remotely sensed data
(Jenkerson et al., 2010; French et al., 2013) and be used to build time se-
ries datasets that allow monitoring of many diverse phenomena.
eMODIS NDVI senses relatively quick-changing ecological processes
(Wylie et al., 2012; Browning et al., 2015) and has done so over long pe-
riods at relatively low cost because of its fine-scale temporal acquisition
schedule, use of data from a long-flying satellite, and broad coverage.
eMODIS NDVI data can also be used tomeasure the variability of annual
vegetation’s response to weather, disturbances, and/or management
(Wylie et al., 2012). Maynard et al. (2016) discovered that in a time se-
ries (2000–2012), MODIS NDVI predicted vegetation biomass better
than Landsat 5 largely due to MODIS’s high temporal resolution com-
posites. A time series of remotely sensed data is valuable, in part, be-
cause it allows the establishment of an average value for each mapped
unit. Comparisons between that average and its time series can elicit
valuable information when one or more periods deviate substantially
from normal (Boyte et al., 2018).

Remotely sensed−based ecological modeling projects generally
rely on field data or its derivatives, and field data are generally difficult
and expensive to obtain and a challenge to directly associate with re-
motely sensed−based results (Bradley et al., 2018). Validating a time
series of ecologically and remotely sensed−based results with field-
based datasets can be problematic for at least two reasons. First, inde-
pendent field data are scarce and may not exist in a study area for all,
or even some, years in a time series (Browning et al., 2015). Second,
the spatial resolution of the remotely sensed data and the spatial repre-
sentation of field plots may be incongruent and require either the spa-
tial manipulation of one dataset to match the other or the acceptance
of spatial resolution differences between datasets. Either of these cir-
cumstances influence validation efforts when comparing satellite data
with field data. When conducting remotely sensed ecological studies
in sagebrush ecosystems, the problems of spatial incongruence between
the remotely sensed data and the field plots can be exacerbated
(Maynard et al., 2016) because, in their native states, these ecosystems
can have highly heterogeneous vegetation patterns with areas of sub-
stantial bare ground that produce mixed satellite reflectance signals.
Therefore, the larger the spatial footprint of the individual pixels in
the remotely sensed data, the more likely the differences will be sub-
stantial between the remotely sensed data and the field data
(Browning et al., 2017).

The goals of this study are twofold: 1) contribute to the understand-
ing of the historical annual grass invasion in the sagebrush ecosystem
and 2) visually demonstrate the spatial and interannual variability of
Please cite this article as: Boyte, S.P., et al., Validating a Time Series of Annua
org/10.1016/j.rama.2018.09.004
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annual grass percent cover in this study’s time series. In the process of
reaching these two goals, we accomplish three objectives: 1) develop
a time series (2000–2016) of yearly maps that describe the relative
abundance and extent of annual grass percent cover in the sagebrush
ecosystem; 2) describe and illustrate the annual grass−percent cover
mapping model and its results; and 3) report the relative accuracy of
this time series. Within the context of these objectives, we hypothesize
that, in already invaded areas, the interannual variability in the time se-
ries of maps will closely follow seasonal precipitation patterns and the
overall accuracy of the maps will show a mean absolute error (MAE)
rate of b 10%. We establish these hypotheses on the basis of our under-
standing of previous work that describes cheatgrass response to highly
variable precipitation (Bradley and Mustard, 2005; Pilliod et al., 2017)
and drivers of environmental resistance to exotic brome grasses
(i.e., cheatgrass [Bromus tectorum L.] and red brome [Bromus rubens L.]),
such as elevation and soil moisture and temperature regimes (Chambers
et al., 2016).

Methods

Study Area

The study area encompassed about 1.3 million km2 of the western
United States, including all of Wyoming and parts of 10 other states
(Fig. 1). All or part of 20 ecoregions fell within the study area’s bound-
ary, including all of the Northern Basin and Range, the Central Basin
and Range, and the Snake River Plain (Commission for Environmental
Cooperation, 2009). This study focused on land dominated by shrub
and grassland/herbaceous vegetation (National Land Cover Database
([NLCD], http://www.mrlc.gov/nlcd2001.php) at or below 2 250-m ele-
vation, and this included approximately 52.5% of the mapped area. A
mask covered the other 47.5% of the area. In previous work, wemapped
average cheatgrass percent cover at b 2% at an elevational range of 1
750−2 000 m (Boyte et al., 2015b, 2016). Consequently, we set a 2
250-m threshold to focus our study on likely areas of annual grass inva-
sion while allowing for expansion of the future annual grass envelope.
The study area’s 30-yr (1981−2010) average precipitation equaled
416 mm with a range from 46 mm in the lower, drier areas to 2
890 mm on higher peaks. The 30-yr temperature averages ranged
from −0.38° C to 14° C (PRISM Climate Group, http://prism.
oregonstate.edu). Elevations ranged from −72 m to 4 357 m with a
mean of 1 818 m (North American Vertical Datum of 1988). Much of
the area was a shrub steppe environment that historically was domi-
nated by sagebrush (Artemisia spp.). The sagebrush coexisted with pe-
rennial grasses like bluebunch wheatgrass (Pseudoroegneria spicata
[Pursh] A. Love), Idaho fescue (Festuca idahoensis Elmer), and Sandberg
bluegrass (Poa secunda J. Presl) and annual invasive grasses like cheat-
grass (Bromus tectorum L.), ventenata (Ventenata dubia [Leers] Coss.),
annual red brome (Bromus reubens L.), and medusahead (Taeniatherum
caput-medusae [L.] Nevski) (West and Young, 2000). Other common
woody species included rabbitbrush (Chrysothamnus Nutt.), winterfat
(Krascheninnikovia Guldenstaedt), greasewood (Sarcobatus Nees),
shadscale (Atriplex confertifolia [Torr, & Frem] S. Watson), and fourwing
saltbush (Atriplex canescens [Pursh] Nutt.) (Wiken et al., 2011). Other
herbaceous species included Thurber’s needlegrass (Achnatherum
thurberianum [Piper] Barkworth), squirreltail (Elymus elymoides [Raf.]
Swezey), western wheatgrass (Pascopyrum smithii [Rydb.] A. Love),
and needle and thread (Hesperostipa [Elias] Barkworth) (Wiken et al.,
2011).

Data

Dependent Variables
We accessed three spatially explicit datasets with 30-m spatial reso-

lution as reference data. This included a north-central Nevada cheat-
grass percent cover dataset (~2001) and an Owyhee Upland annual
l Grass Percent Cover in the Sagebrush Ecosystem, (2018), https://doi.
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Figure 1. The study area showing the general spatial distribution of training data locations. Each location is colored based on the yr the training data represent.Multiple pixels residewithin
each location, but every potential pixel is not selected as a training point. The values associated with each yr show that yr’s training data percent cover range.We harvested training data
only from locations classified by the National Land Cover Database (NLCD) as shrub or grassland/herbaceous and at or below 2 250m elevation. Amask (white) covers all other areas. The
size and shape of each training data location varies on the basis of the pixels within that location that meet the NLCD and elevation parameters. The 2011 NLCD serves as a backdrop.
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nv.gov/). We also used percent cover estimates of annual herbaceous
vegetation (2013–2015) datasets. These datasets used WorldView
data and were developed by a team of researchers, field technicians,
and Global Information System/remote sensing experts associated
with the US Geological Survey (USGS) NLCD project (Xian et al.,
2015). Because we utilized reference datasets from sources that quan-
tify cheatgrass, annual grass, and annual herbaceous vegetation we
refer to the data this study produced as annual grass−percent cover
maps.Weused the cheatgrass and annual grass datasets in twoprevious
publications (Boyte et al., 2015a, 2016)wherewedescribed thedatasets
and their accuracy. In brief, these two datasets were developed using
2001 Landsat 7 Enhanced Thematic Mapper Plus (ETM+) or 2006
Landsat 5 Thematic Mapper (TM) satellite data combined with geo-
physical variables along with data from more than 650 field plots
(Peterson, 2005, 2007). The 2001 cheatgrass dataset experienced a cor-
relation coefficient (r) of 71% and a root mean squared error (RMSE) of
9.1% (Peterson, 2005). The 2006 annual grass dataset had an RMSE be-
tween 10% and 16%, with 75% of field plots within 14% of the field mea-
surements (Peterson, 2007). The annual herbaceous datasets were
developed using a multi-scaling approach that integrated sample data
from field plots with high-resolution (~2 m) WorldView-2 and
WorldView-3 satellite data with 8 spectral bands (Xian et al., 2015). Al-
gorithms that predict annual herbaceous percent cover were developed
with rule-based regression-tree software, and then the algorithmswere
Please cite this article as: Boyte, S.P., et al., Validating a Time Series of Annua
org/10.1016/j.rama.2018.09.004
applied to a mapping application that generated 2-m spatially explicit
estimates. The 2-m estimates were spatially averaged to a 30-m spatial
resolution using the degrade tool in ERDAS Imagine. This tool averages
the original pixels that compose the new, larger spatial resolution
pixels. These 30-m datasets were then, as were the 30-m cheatgrass
percent cover and annual grass index data, spatially averaged using a
7 × 7 focal mean and resampled to 250-m to match the spatial resolu-
tion of the eMODIS NDVI data.

Independent Variables
Independent variables were chosen that help quantify annual grass

percent cover. These variables had to be spatially explicit and cover
the entirety of the study area. They included satellite, topographic,
soils, climatic, land cover, and disturbance datasets. The satellite data
were generated from 17 yr (2000–2016) of 250-m eMODIS NDVI data
and used to develop four derivative variables for each year: mean grow-
ing season NDVI (Spring GSNs), mean summer NDVI (Summer GSNs),
annual grass indices, and estimated start of season spring growth. The
NDVI product used the MODIS red (620–670 nm) and near-infrared
(NIR) (841–876 nm) bands in an equation (Eq. (1)) (Jensen, 2005)
that measures dynamic vegetation greenness. The eMODIS NDVI data
consisted of 7-d best pixel composites derived from daily data where
a minimum-value-composite algorithm identified the best pixel in
each 7-d period by filtering through input surface reflectance of poor
quality, negative values, low view angles, clouds, and snow cover
l Grass Percent Cover in the Sagebrush Ecosystem, (2018), https://doi.
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t1:1Table 1
t1:2Driving variables for the annual grass−percent cover model. Frequency (%) of use is
t1:3shown for each variable used to establish rule conditions and the associated linear regres-
t1:4sionmodels. Dashes indicate that a variable was not used. Themodelwas constructed of 5
t1:5committees and 27 rules.

t1:6Driving variable Rule conditions Linear regression model

t1:7Spring GSN 78 95
t1:8Elevation 78 93
t1:9Available water capacity 50 69
t1:1030-yr precipitation 45 77
t1:11Start of season time 33 73
t1:12Annual grass index 16 68
t1:13Time since fire 15 41
t1:14National land cover database 13 −
t1:15Soil organic matter 11 77
t1:16Summer GSN 9 93
t1:17Compound topographic index − 35
t1:18South facing steep slope − 14
t1:19North facing steep slope − 13

t1:20Based on 9 randomizations: training data R2 = 0.76. Mean absolute error = 5.79 ± 0.03.
t1:21Test data R2 = 0.74. Mean absolute error = 5.84 ± 0.11. Ten-fold cross validation R2 =
t1:220.74. Several variableswere initially applied to themodel but omitted because they caused
t1:23excessive spatial artifacts in themaps. These variables include a latitude proxy,Major Land
t1:24Resource Area, LANDFIRE environmental site potential, 30-yr temperature maximums,
t1:25and 30-yr temperature minimums.

t2:1Table 2
t2:2The number of training points by yr.

t2:3Yr Points

t2:42001 4804
t2:52006 4418
t2:62013 4970
t2:72014 10061
t2:82015 9493
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(Jenkerson et al., 2010). These composites mitigated problems caused
by clouds, shadows, off-nadir fields of view, and atmospheric effects
(Jenkerson et al., 2010). After acquisition, the composites were tempo-
rally smoothed to further mitigate residual cloud effects. The 7-d tem-
poral resolution of the eMODIS NDVI data captured the phenological
dynamics of rapidly developing annual grasses and, when combined
with this data source’s ability tomitigate problems inherent to remotely
sensed data, made it a strong choice to monitor annual grass percent
cover on an annual time step.

NDVI ¼ ρnir−ρred

ρnir þ ρred
;where

ρred¼red reflectance

ρnir¼near infrared reflectance

(
ð1Þ

The annual grass indices were a function of Spring GSNs and Sum-
mer GSNs (Eq. (2)) (Kokaly, 2011). Each variablewas spatially and tem-
porally dynamic and reflected the variation in weather, disturbances,
management, and site characteristics at each pixel. The start of season
spring growthwas a phenologically driven variable used only to identify
each pixel’s dynamic starting point (the eMODIS NDVI weekly compos-
ite) of SpringGSN’s integration period (Boyte et al., 2015b).We incorpo-
rated an independently developed 250-m remotely sensed phenology
dataset derived from eMODIS NDVI, start of season time (SOST)
(http://phenology.cr.usgs.gov/index.php), into the model as an inde-
pendent variable. To account for fire disturbances in our model, we in-
cluded a 250-m time-since-fire dataset that used Monitoring Trends in
Burn Severity data (https://www.mtbs.gov/). Elevation data and their
derivatives, steep slope with aspect and a compound topographic
index, were produced from 30-m data available from The National
Map (https://nationalmap.gov/elevation.html). Slopes exceeding 8.5%
were classified as steep. North-facing and south-facing slopes were de-
fined by azimuths from 315 degrees to 45 degrees and 135 degrees to
225 degrees, respectively. Digital soils data included 30-m available
water capacity and soil organic matter from the POLARIS website
(http://stream.princeton.edu/POLARIS/). To define precipitation zones
in our study area, we resampled 30-yr averages (1981–2010) of
PRISM (http://prism.oregonstate.edu) precipitation data at 800 m spa-
tial resolution to 250 m using bilinear interpolation. We used one cate-
gorical dataset, the 30-m 2011 National Land Cover Database, to help
stratify the model at areas classified as shrub or herbaceous. We spa-
tially averaged all 30-m datasets and then resampled them to 250 m
to match the eMODIS NDVI data.

Annual Grass Index

¼ SpringGSN−Summer GSN
Spring GSN þ Summer GSN

;

where Spring GSN ¼ integrated growing season NDVI
Summer GSN ¼ integrated summer NDVI

�
ð2Þ

Developing the Rule-Based Regression-Tree Model

The dependent and independent variables described earlier pro-
vided information on training cases for our model. We entered these
variables into rule-based, regression-tree software (https://www.
rulequest.com/) and used them to develop a spatially explicit model of
annual grass−percent cover estimates. The regression-tree software
stratified rules by relating the dependent variable to the independent
variables. Each rule had an associated algorithm that was used to de-
velop an estimation for all pixels that fit that specific rule. We reduced
the number of rules and removed some variables from our model
(Table 1). The fewer rules employed by themodel, themore generalized
the model estimates. The more rules employed by the model, the more
specific the model estimates, and the more likely the model would be
overfit (Gu et al., 2016). More rules could also have added intermittent
spatial artifacts to mapping outputs, artifacts that reflect the spatial
Please cite this article as: Boyte, S.P., et al., Validating a Time Series of Annua
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pattern of specific independent variables and not what was on the
ground. Some modelers remove independent variables that add spatial
artifacts to their maps.We tested the number of model rules atmultiple
values between 100 and 25, and we found that 27 rules optimized the
model relatively well and left its mapping outputs mostly free of spatial
artifacts. We trained the annual grass model on 33 746 randomly strat-
ified points that were spaced through time (Table 2) and spatially dis-
tributed throughout the unmasked portion of the study area (see
Fig. 1) where herbaceous/grasslands or shrub lands were the dominant
land cover (http://www.mrlc.gov/nlcd2001.php). We harvested the
training points from the 5 yr of data described in the dependent vari-
ables subsection and built a model robust to dynamic conditions like
weather, disturbances, and management. Training a synoptic model
with points that represented a variety of conditions encountered
through time and space reducedmodel extrapolation and created better
model estimates (Jung et al., 2009; Gu et al., 2012).
Developing the Time Series of Annual Grass Maps

Themodel developed by the regression-tree software for the annual
grass estimates was applied using a mapping application, MapCubist.
USGS Earth Resources Observation and Science (EROS) Center com-
puter scientists developed MapCubist using publicly available source
code provided by RuleQuest (https://www.rulequest.com/). This code
usedGDAL (http://www.gdal.org/), an open-source raster processing li-
brary to produce an application capable of reading a list of rasters, ap-
plying the rule-based, linear regression equations to the independent
variables and producing output estimates for each year in the time se-
ries. All rasters of independent variables represented the entire study
area extent.
l Grass Percent Cover in the Sagebrush Ecosystem, (2018), https://doi.

http://phenology.cr.usgs.gov/index.php
https://www.mtbs.gov
https://nationalmap.gov/elevation.html
http://stream.princeton.edu/POLARIS/
http://prism.oregonstate.edu
https://www.rulequest.com
https://www.rulequest.com
http://www.mrlc.gov/nlcd2001.php
https://www.rulequest.com
http://www.gdal.org
https://doi.org/10.1016/j.rama.2018.09.004
https://doi.org/10.1016/j.rama.2018.09.004
Original text:
Inserted Text
"Table 2."

Original text:
Inserted Text
"Table 1."



331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

5S.P. Boyte et al. / Rangeland Ecology & Management xxx (xxxx) xxx–xxx
Model Evaluation

The regression-tree software produced model estimates based on
the associations between the dependent and independent variables
and generated model accuracy metrics. These metrics included the cor-
relation coefficient and anMAE rate. Several user-controlled parameters
changed the model structure, and these parameters included the num-
ber of committee models used iteratively to improve substantially in-
correct estimates, percentage of model extrapolation allowed, and
maximum number of rules the model used to stratify the data. Once
we optimized the model’s parameters (Gu et al., 2016), we set the
regression-tree software to begin with a random seed and then con-
ducted nine bootstrap model runs. We averaged the accuracy metrics
of the nine model runs for overall model accuracy. Separately, we gen-
erated a model with a 10-fold cross validation where each of the 10
folds was withheld sequentially as test data. This validation process
also output a correlation coefficient and an MAE rate. We converted
the correlation coefficient to an R2.

Assessment Inventory and Monitoring Data
We downloaded several yr (2011–2016) of Bureau of LandManage-

ment (BLM) Assessment Inventory and Monitoring (AIM) data that co-
incided with our study period and area (https://gis.blm.gov/
AIMdownload/layerpackages/BLM_AIM_Terrestrial.lpk) (Fig. 2). AIM
data are designed “to quantitatively assess the condition, trends,
amount, location, and spatial pattern of natural resources on the na-
tion’s public lands” (https://landscape.blm.gov/geoportal/catalog/AIM/
U
N
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O
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T

Figure 2. Assessment Inventory and Monitoring (AIM) plot locations delineated temporally b
corresponding mapped estimates of annual grass percent cover to assess the maps’ accuracies.
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AIM.page). Herrick et al. (2017) described the collection of AIM data
where a line-point intercept method was used with a pin to measure
vegetation percent cover and composition. Plot transect lengths typi-
cally extended from 25 to 50 m, and plot designs took several forms in-
cluding a spoke, parallel lines, or a single straight or curved line. We
compared the AIM data to our mapping estimates, calculated the corre-
lation coefficient, MAE rate, and normalized root mean square error
(nRMSE) for each individual year and for all years combined (Table 3).
The nRMSE is a dimensionless statistic that measures model fit with
no regard for a dataset’s range and allows comparison betweenmultiple
RMSE calculations (Homer et al., 2012). Two incongruities exist be-
tween the AIM data and the mapped estimates of annual grass percent
cover. First, the AIMprocess uses an “any hit” technique—any time a pin
is dropped, every plant the pin touches is recorded as a hit and included
in the percent cover calculation, irrespective of whether the hit is in the
upper or lower canopy. This can result in vegetation cover hypotheti-
cally being recorded at N 100%. Passive radiometers (visible, infrared,
and shortwave infrared) on satellites respond primarily to the charac-
teristics of the top canopy layers with low or no sensitivity to the
lower canopy levels in dense vegetation. Mapped estimates did not ex-
ceed 100%. Second, and likely more important, spatial resolution differ-
ences existed between the AIM data and mapped estimates, which is a
common problem when validating remote sensing data (Bradley et al.,
2018). Spatially, the AIM-transect plots represented approximately
4.5−15.2% of a 250-m pixel (a 250-m pixel represents 6.25 ha, so
AIM-transect plots represent ≈0.28−0.95 ha), depending on transect
lengths in the plot design. Consequently, in many cases, AIM annual
E
D

y color overlaid on the 2011 National Land Cover Database. We compared AIM data with

l Grass Percent Cover in the Sagebrush Ecosystem, (2018), https://doi.

https://gis.blm.gov/AIMdownload/layerpackages/BLM_AIM_Terrestrial.lpk
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t3:1 Table 3
t3:2 Comparing Bureau of Land Management Assessment Inventory and Monitoring (AIM)
t3:3 plots to annual grass−percent cover mapped estimates. The AIM plots represent from
t3:4 4.5% to 15.2% of a 250-m pixel, depending on the transect length in the plot design. The
t3:5 spatial resolution disparity between datasets likely affects the statistics that describe the
t3:6 relationship. The units are percent based on AIM plot data.

t3:7 Yr r MAE (%) nRMSE (%) n =

t3:8 2011 0.60 15.69 0.23 332
t3:9 2012 0.55 14.92 0.19 367
t3:10 2013 0.39 7.89 0.17 712
t3:11 2014 0.50 12.15 0.17 569
t3:12 2015 0.49 12.44 0.20 721
t3:13 2016 0.50 13.90 0.20 1489
t3:14 All Yrs 0.50 12.62 0.18 4190
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grass percent cover likely was assimilated into other vegetation types’
cover at the 250-m pixel scale and diluted as a percentage of the total
at that coarser scale. The spatial difference between the 250-m pixels
and AIM plots led us to conduct a 3 × 3 standard deviation focal scan
on our 2011−2016 maps to identify areas of high variability. We elim-
inated plots from comparison that fell in areas of high variability, with
pixels of high variability defined by exceeding the median value of the
focal scan. This allowed us to compare AIM plots to points on our
maps where local spatial variability was moderate or low. However,
the standard deviation focal scan produced results with severely re-
duced data ranges, which substantially affected the correlation coeffi-
cient and MAE statistics, so we rejected the standard deviation focal
U
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Figure 3. The 10 leave-one-out groups displayed and delineated by color.We randomly sorted
cheatgrass percent cover dataset (~2001), and Owyhee Upland annual grass index
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scan output. In addition to the spatial resolution challenge, AIM plots
can occur anywhere within a 250-m pixel. On the infrequent occasion
(b 5%) when the footprint of an AIM plot fell at the intersection of mul-
tiple pixels with highly variable estimated values, we removed the plot
from the analysis.

Leave-One-Out Validation
Leave-one-out validation is a spatially rigorous assessment tech-

nique effective at assessing maps that represent large geographical
areas (Wylie et al., 2007; Zhang et al., 2011; Boyte et al., 2018). This
technique mitigates spatial autocorrelation by sorting all reference
data into 10 spatially and temporally randomly sorted groups and
then, systematically, withholding each group as test data and using
the remaining 9 groups as training data to develop 10 individual
models. For this study, we chose to create 10 groups of reference data
(Fig. 3) so that group members were distributed spatially, and the
group test datasets were large enough to generate robust model accu-
racy metrics. To conduct a different analysis, we separated the 30-m
annual herbaceous percent cover datasets derived from the high-
resolutionWorldView data from the 30-m north-central Nevada cheat-
grass percent cover and theOwyhee Upland annual grass index data de-
rived from Landsat data. We used the data derived from WorldView
scenes once as test data while the data from the two other datasets
were used to train the model. We then inverted the test and training
datasets and repeated the process. Separating the WorldView-derived
data from the north-central Nevada and theOwyheeUpland data before
running the model allowed us to understand better the spatiotemporal
T
E
D

theWorldView annual herbaceous vegetation (2013–2015) dataset, north-central Nevada
(2006) into 10 groups and used them iteratively to evaluate model accuracy.

l Grass Percent Cover in the Sagebrush Ecosystem, (2018), https://doi.
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t4:1 Table 4
t4:2 The leave-one-out technique statistics. This technique sorts N 33 000 points from the
t4:3 WorldView, north-central Nevada, and Owyhee Uplands data into 10 random groups.
t4:4 Wewithheld each group systematically and iteratively as test data and used the remaining
t4:5 nine groups to train the model. In addition, we withheld all WorldView data as test data
t4:6 and used the Nevada and Owyhee Uplands data to train themodel. We then inverted this
t4:7 process using the Nevada and Owyhee Uplands data as test data and theWorldView data
t4:8 to train the model.

t4:9 Group Test r Test MAE (%) Test nRMSE (%) Range Test n =

t4:10 1 0.48 10.41 0.15 0-99 3960
t4:11 2 0.62 10.85 0.17 0-95 4388
t4:12 3 0.47 4.93 0.13 0-55 3221
t4:13 4 0.63 10.45 0.15 0-100 3615
t4:14 5 0.93 8.14 0.12 0-99 2208
t4:15 6 0.86 10.01 0.14 0-100 2212
t4:16 7 0.67 8.20 0.13 0-100 5659
t4:17 8 0.65 5.70 0.12 0-67 2203
t4:18 9 0.41 5.31 0.10 0-99 2639
t4:19 10 0.61 8.01 0.13 0-98 3361
t4:20 All groups 0.71 8.43 0.13 —
t4:21 Peterson test 0.68 16.10 0.18 0-85 9018
t4:22 WorldView test 0.52 10.59 0.25 0-100 24359
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dynamics of these datasets. For each individual model run, the
regression-tree software generated a correlation coefficient and an
MAE rate, and we calculated the nRMSE (Table 4). The leave-one-out
technique evaluated the mapped estimates of annual grass percent
cover using 250-m spatial resolution data (i.e., the WorldView-derived
data and the north-central Nevada and Owyhee Uplands datasets after
they were spatially averaged from 30m to 250 m). The random sorting
of the dependent variable datasets generated groups that were both
spatially and temporally diverse, which helpedmitigatemodel extrapo-
lation bias.

Quantifying Bias

We quantified bias between the annual grass maps and the leave-
one-out validation dataset. The bias was quantified at 5% and 95%
cover and determined on the basis of a theoretical minimum and max-
imum of 0−100% cover, which also was the range of the predicted
values. For AIM data, we used the regression equation that compared
the AIM dataset to mapped estimates of annual grass percent cover
(see Eq. (2)) at the values of 5% and 95% cover. It is important to note
that because the “any-hit” collection strategy used to gather the AIM
data can theoretically lead to data values N 100%, and the sampling strat-
egies used to create themapped estimates’ reference data cannot gener-
ate values that exceed 100%, the calculated difference between the
estimates of annual grass percent cover and the expected y-values
does not measure true bias.

y ¼ 1:1053xþ 5:4649 ð3Þ

We used the regression equation from the leave-one-out validation
data (see Eq. (1)) that was comparedwith themapped estimates of an-
nual grass percent cover. This equation was used to calculate the ex-
pected y-values at the estimated values of 5% and 95% cover. The
difference between the estimates of annual grass percent cover and
the expected y-values measured bias.

y ¼ 0:8975xþ 3:549 ð4Þ

Results

The model’s use of independent variables helps the user understand
the variables that most influence model development (see Table 1).
Overall, the annual grass−percent cover model uses elevation and the
Spring GSN substantially more than other variables. Summer GSN,
Please cite this article as: Boyte, S.P., et al., Validating a Time Series of Annua
org/10.1016/j.rama.2018.09.004
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while seldom used to establish conditions that stratify rules, is used in
93% of the model algorithms, equal to the model’s usage of elevation
for algorithm development. Other variables the model uses frequently
include 30-yr precipitation and available water capacity, a measure of
soil water potential. Soil organic matter and SOST contribute relatively
infrequently to rules stratification, but the model uses each to develop
at least 73% of the algorithms. Topographical variables other than eleva-
tion (i.e., north steep slope and south steep slope) are used least by the
model and only for algorithm development.

Annual Grass−Percent Cover Model and Maps

The annual grass−percent cover model shows a training and test
data R2 equal to 0.76 and 0.74, respectively (see Table 1). The model
also shows a training and test data MAE rate equal to 5.79% with a stan-
dard deviation (SD) of ±0.03 and 5.84% with an SD of ±0.11, respec-
tively. The 10-fold cross validation produced an R2 of 0.74 and an MAE
rate of 5.90%. Estimated annual grass−percent cover during the 17-yr
time series ranges from 0 to 100 and experiences substantial temporal
and spatial variability.We illustrate this variability by displaying the an-
nual grass maps with the two lowest (2002 and 2012) and the two
highest (2005 and 2016) overall average percent cover in the time se-
ries (Fig. 4; Table 5); (access the time series of data and associatedmeta-
data at [dataset] Boyte and Wylie, 2017). The Snake River Plain
ecoregion tracks from eastern Idaho through south-central and south-
western Idaho into eastern Oregon, and this ecoregion consistently ex-
periences some of the highest annual grass percent cover in the study
area (Fig. 5). The ecoregion’s 17-yr mean annual grass percent cover
equals 19.88 compared with 7.31 for the entire study area, and 88% of
pixels that average N 60% throughout the study period are located
here. This high percent cover mapping consistency is further illustrated
by the coefficient of variationmap, which shows relatively low variabil-
ity inmuch of this area. In northernNevada and southeast Oregon, 2 yr—
2005 and 2016—stand out as especially prolific for annual grass percent
cover, with values exceeding 70% in select places during both yr (see
Fig. 4). Examining the time series mean map and recognizing that the
coefficient of variation map shows relatively substantial variability in
these areas indicates that these 2 yr are likely outliers. In northern Ne-
vada during 2012, our model estimated anomalously low annual grass
percent cover following a productive 2011 (see Table 5). A relatively
substantial annual grass percent cover exists throughout much of the
study period in northeast Colorado, northwest Nebraska, and southeast
Wyoming, but overall cover in this area only occasionally exceeds 30%.
Thus, the most heavily invaded areas are northern Nevada and the
Snake River Plain, although the middle of these two areas, at the inter-
section of Nevada, Idaho, and Oregon, exhibits low annual grass percent
cover throughout the time series.

The annual grass percent cover datasets are each positively skewed
with substantially more low percent cover values than high percent
cover values. This is evident from the time series’ median values and
narrow 25th percentile and 75th percentile ranges while every yr’s
data range (≥ 99) is much broader (Fig. 6A). Table 5 also demonstrates
the temporal variability of annual grass percent cover where the overall
mean percent cover ranges from 6.14 in 2012 to 11.25 in 2016. Depar-
tures from the 17-yr normal percent cover for the study period range
from 16% lower than average (2012) to 54% higher than average
(2016). Over large geographical areas, average interannual variability
in annual grass percent cover is strongly driven by weather, especially
precipitation (Bradley andMustard, 2005; Pilliod et al., 2017), including
timing and seasonal totals (Boyte et al., 2016). Figure 6A and B illus-
trates howestimated annual grass percent cover and seasonal precipita-
tion (defined asOctober–May) track throughout the time series (we did
not use seasonal or annual precipitation to model annual grass percent
cover.). For most years, annual grass−percent cover patterns track
closely with seasonal precipitation. Deviations from the normal pattern
exist during 2001 and 2007 when less-than-average precipitation
l Grass Percent Cover in the Sagebrush Ecosystem, (2018), https://doi.
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Figure 4.We spatially contrast the 2 yr with the overall lowest percent cover (2002 and 2012) with the 2 yr with the overall highest percent cover (2005 and 2016). These maps are an
example of the temporal variability of annual grass percent cover through the 17-yr time series. Percent cover varies annually based on disturbances,management, andweather, especially
precipitation. We also show the 17-yr percent cover mean and the coefficient of variation maps. The mask (white) covers areas not classified as shrub or grassland/herbaceous by the
National Land Cover Database or areas at or above 2 250-m elevation.
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cover. Also in 2008 and 2009, average and slightly less-than-average
precipitation correspond with less-than-average annual grass percent
cover. Substantial peaks in annual grass percent cover during 2005
and 2011 correspond with substantial peaks in seasonal precipitation.
The final 3 yr of the time series show progressively increasing precipita-
tion totals and progressively increasing annual grass percent cover. This
includes the highest annual grass-percent cover value of the time series
in 2016.

Model Evaluation

Despite the substantial spatial resolution differences between
datasets, a comparison of 6 yr of BLM AIM data with corresponding an-
nual grass−percent cover maps shows moderately strong agreement
for most years. With the range of yearly AIM data values being highly
variable, the correlation coefficient is marginally effective in describing
the relationship between the datasets, so we focus on the MAE rate
and nRMSE (see Table 3).We also quantified the difference at the values
of 5% and 95% cover, generally, between the AIM data and the
Please cite this article as: Boyte, S.P., et al., Validating a Time Series of Annua
org/10.1016/j.rama.2018.09.004
corresponding annual grass−percent cover maps for all years com-
bined. The MAE rates vary widely, with the highest rate registered in
2011 at 15.60% and the lowest rate registered in 2013 at 7.89%. The
nRMSE ranges from 0.17 in 2013 and 2014 to 0.23 in 2011. When we
combine all 6 yr of data, the MAE rate is 12.62% and the nRMSE is
0.18. Figure 7 shows the comparison between AIM data and modeled
estimates of annual grass percent cover. The scatterplot reveals an
abundance of points in the bottom left corner, a scarcity of points in
the lower right corner, and few data points above 40% on the x-axis.
Many of themore substantial differences between datasets could be re-
lated to differences in the spatial footprints of the AIM data and annual
grass−percent cover maps because variability in vegetation is likely to
be higher over the larger footprints of themaps’ pixels. Overall, the data
regression line shows relative consistency with the 1:1 line. There is a
fairly consistent underestimation by the annual grass−percent cover
maps, which could be related to lower canopy hits in the AIM data.
Higher cover values than what exist in the WorldView, north-central
Nevada, and Owyhee Uplands data would result from the “any-hit”
method. At an estimated cover of 5%, the expected y-value equaled
10.99% cover based on the regression equation (Eq. (3)). At an
l Grass Percent Cover in the Sagebrush Ecosystem, (2018), https://doi.
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t5:1 Table 5
t5:2 Statistics describing the 17-yr time series of annual grass−percent cover estimates in the sagebrush ecosystem. The data distribution is skewed positive; therefore, themean percent sta-
t5:3 tistic ismore sensitive than themedian to high percent cover. Statistics are calculated only on unmasked areaswhere the National Land Cover Database classifies a pixel as shrub or grass-
t5:4 land/herbaceous and the elevation is at or below 2 250 m.

t5:5 Yr Mean percent cover Change from 17-yr mean percent cover % change from 17-yr mean percent cover Range

t5:6 2000 7.38 0.07 0.96 0-99
t5:7 2001 7.63 0.32 4.38 0-100
t5:8 2002 6.34 −0.97 −13.27 0-100
t5:9 2003 7.33 0.02 0.27 0-100
t5:10 2004 7.15 −0.16 −2.19 0-100
t5:11 2005 10.60 3.29 45.01 0-100
t5:12 2006 7.42 0.11 1.50 0-100
t5:13 2007 8.08 0.77 10.53 0-100
t5:14 2008 6.52 −0.79 −10.81 0-100
t5:15 2009 6.49 −0.82 −11.22 0-100
t5:16 2010 7.70 0.39 5.34 0-100
t5:17 2011 8.67 1.36 18.60 0-100
t5:18 2012 6.14 −1.17 −16.01 0-100
t5:19 2013 6.43 −0.88 −12.04 0-99
t5:20 2014 7.98 0.67 9.17 0-100
t5:21 2015 8.86 1.55 21.20 0-100
t5:22 2016 11.25 3.94 53.90 0-100
t5:23 17-yr mean 7.31 — — 0-96

Figure 5. Estimated annual grass−percent cover (A) and seasonal (October–May) precipitation (B) tracked throughout the study period. The boxes show each yr’smedian value and 25th
and 75th percentiles. Seasonal precipitation totalsweremore strongly correlated to the temporal variability of estimated annual grass percent cover thanwere annual precipitation totals.
Statistics were derived from data that were masked to areas classified by the National Land Cover Database as shrub or grassland/herbaceous at or below 2 250-m elevation.
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Sticky Note
This figure caption is incorrect. This caption is the caption for Figure 6. The caption for Figure 5 is as follows: Figure 5. The highest annual grass percent cover occurs in the Snake River Plain ecoregion where the 17-yr mean cover value equaled 19.88 percent vs. 7.31 percent for the entire study area. We contrast the 2 yr with lowest percent cover (2002 and 2012) with the 2 yr with the highest percent cover (2005 and 2016). These maps are an example of the temporal variability of annual grass percent cover in this ecoregion through the 17-yr time series. Percent cover varies annually based on disturbances, management, and weather, especially precipitation. We also show the 17-yr percent cover mean and the coefficient of variation maps. The mask (white) covers areas not classified as shrub or grassland/herbaceous by the National Land Cover Database or areas at or above 2 250-m elevation.
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Figure 6. Comparing all yrs of Bureau of Land Management Assessment and Inventory Monitoring data to corresponding yrs of estimated annual grass percent cover.
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Restimated cover of 95%, the expected y-value equaled 110.47% cover

based on the regression equation.
The leave-one-out assessment benefits from spatial resolution

agreement between datasets (i.e., both the reference data and mapped
estimates of annual grass percent cover) represent a 250-m footprint.
For the 10 randomly sorted groups, the lowest r=0.41 and the highest
r=0.93 (see Table 4). TheMAE rate ranges from 4.93% to 10.85%. Com-
bining data from the 10 groups renders an r of 0.71 and an MAE rate of
8.43%. To conduct a different analysis, we separated theWorldView ref-
erence data from the north-central Nevada and Owyhee Uplands refer-
ence data. We used the WorldView reference data as test data,
developing themodel using only the north-central Nevada and Owyhee
Uplands data. Themodel developed renders a testMAE rate of 10.59 and
an nRMSE of 0.18. When the north-central Nevada and Owyhee Up-
lands data are used as test data, the test MAE rate = 16.10% and
nRMSE = 0.25. In the leave-one-out assessment, the location of the re-
gression line in relation to the 1:1 line in Figure 8 demonstrates that the
model is most accurate when it estimates about 35% annual grass per-
cent cover. Below that threshold, themodel slightly underestimates an-
nual grass percent cover, and above that threshold the model
overestimates annual grass percent cover. Quantifying bias in the
leave-one-out assessment shows at an estimated cover of 5%, the ex-
pected y-value equals 8.04% cover based on the regression equation
(see Eq. (4)). At an estimated cover of 95%, the expected y-value equals
88.81% cover.
Please cite this article as: Boyte, S.P., et al., Validating a Time Series of Annua
org/10.1016/j.rama.2018.09.004
Discussion

The invasion of annual grasses in the sagebrush ecosystem poses
challenges to land managers, scientists, and practitioners because
these grasses alter historical fire regimes, making fires more frequent,
larger, and more severe (Whisenant, 1990; Balch et al., 2013). The
changed fire regime adds to the continued degradation of the sagebrush
ecosystem and requires these constituent groups to respond differently
to new ecological realities. Even fighting fires has become potentially
more dangerous as highly flammable grasses invade open meadows
and scablands, land covers that formerly served as safe zones for fire-
fighters (Kerns et al., 2016a, 2016b). The current study develops a syn-
optic annual grass−percent cover model and associated maps in the
sagebrush ecosystem for a 17-yr period, and this time series constitutes
the longest consistent annual grass-mapping project over the broadest
geographical area in the sagebrush ecosystem of which we are aware.
The map results support the assertion that annual grasses are spatially
variable because of site conditions (Chambers et al., 2016), even over
multiple ecoregions. The map results also support the assertion that
precipitation is a strong driver of annual grass percent cover (Bradley
andMustard, 2005; Pilliod et al., 2017). An increasing trend in both sea-
sonal precipitation totals and annual grass percent cover is evident since
2012, although the timingof precipitation could explain deviations from
expected patterns of annual grass percent cover to seasonal precipita-
tion totals during earlier years of the time series (see Fig. 6).
l Grass Percent Cover in the Sagebrush Ecosystem, (2018), https://doi.
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Figure 7. The leave-one-out assessment scatterplot that illustrates the relationship of
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We evaluate the model and maps using two techniques. One evalu-
ation technique employs an approach that uses field-based BLM AIM
data. We acknowledge the substantial spatial difference between the
AIM data and the 250-m spatial resolution of annual grass−percent
cover maps where an AIM plot covers at most 15.2% of a 250-m pixel.
However, the multiyear collection strategy, ubiquity, and availability
of the AIM data make it a reasonable choice for assessment of the time
series, especially as continuous years of available field validation data
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that spatially match 250-m remote sensing data are extremely uncom-
mon (Browning et al., 2015, 2017; Bradley et al., 2018). Figure 7 illus-
trates the relationship between data from AIM plots and
corresponding estimated annual grass percent cover. Because an AIM
plot is much smaller than a pixel of an annual grass−percent cover
map, higher values in the AIM data will correspond with lower values
in a pixel because species variability is more likely in a broader space.
This makes the abundance of points in the upper left corner of the
scatterplot foreseeable. The absence of all but one point in the lower
right corner of Figure 7 indicates that the annual grass−percent cover
model rarely produces high values at a 250-m pixel scale that are asso-
ciated with low values at the AIM plot scale. This phenomenon occur-
ring frequently would indicate significant model error, so the scarcity
of such points helps validate the mapping model.

A second evaluation technique, leave-one-out, is a spatially random
approach that mitigates spatial autocorrelation issues and accounts for
the expansive geographic territory from where the training data are
harvested. The leave-one-out comparison shows a relatively strong
agreement between datasets with an overall test MAE rate of 8.43%
and an overall test nRMSE of 0.13 (see Table 4). The model generates
better prediction test error terms (MAE and nRMSE) when
WorldView-derived data are withheld as test data than when the
north-central Nevada and Owyhee Uplands data are withheld as test
data. This implies that the mapping algorithms developed solely on
the Great Basin and Snake River Plain areas are not as robust when
they are applied to eastern extents of the study area. This may indicate
functional differences between annual grass in the Great Basin and an-
nual grass in Wyoming and Colorado. Certainly, the northeastern and
southeastern parts of Wyoming will have significantly greater grass
components that will complicate the separation of annual herbaceous
vegetation. These east-to-west differences in annual grass−percent
cover mapping can also be related to temporal differences because the
north-central Nevada and Owyhee Uplands datasets are developed
with reference data collected before 2007 while the WorldView
datasets are developed with reference data collected after 2012.

Overall, the agreement between the dependent variable and annual
grass estimates is relatively strong based on the r, MAE error rates,
nRMSE, and proximity of the regression lines to the 1:1 lines in Figures 7
and 8. The difference is evident between the regression line and 1:1 line
when comparing the AIMdata and annual grassmaps in Figure 7 and, in
many cases, likely related to the spatial resolution and the “any-hit”
strategy of the AIM data gathering technique. The “any-hit” effect is
likely compounded at higher percent cover, which is reflected in the
much higher difference quantified at 95% cover (+15.47%) than at 5%
cover (+5.99%). Bias is evident in Figure 8 and demonstratesminor un-
derestimation (−3.04%) at 5% cover, modest overestimation (+6.19%)
at 95% cover, and nearly no bias at about 35% annual grass percent cover.
The substantially greater number of data points at lower values than
higher values in Figure 8 suggests thatwhile annual grass can be present
in high percent cover over relatively large areas (250-m pixels), in our
mapped time series, low percent cover is much more likely to occur,
generally reflecting variability of vegetation, litter, and bare ground
components in 250-m pixels. In the leave-one-out approach, no spatial
resolution difference occurs between the reference data and modeled
data, so the differences between these datasets should be less than
with the AIM data comparison.

We hypothesized that the time series ofmapswould visually exhibit
both spatial and interannual variability of annual grass percent cover in
already invaded areas and that this interannual variabilitywould closely
follow seasonal precipitation patterns. Areas invaded by annual grasses
do experience interannual variable percent cover because of spatially
dispersed and intermittent disturbances and management activities.
However, weather, especially precipitation totals and timing (Bradley,
2009) and recent years’ precipitation (Pilliod et al., 2017), contributes
to this interannual variability across the entire study area and, therefore,
has broader impact. In Figure 6A and B, we see that 2001 and 2007 are
l Grass Percent Cover in the Sagebrush Ecosystem, (2018), https://doi.
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deviations from the normal mean percent cover/seasonal precipitation
pattern when less-than-average seasonal precipitation corresponds
with a slight increase in annual grass percent cover. Cheatgrass seeds
can stay viable for several years, and Pilliod et al. (2017) discovered
that, in the Great Basin, high cheatgrass seed production during 1 yr
can lead to high cheatgrass cover in subsequent years if adequate pre-
cipitation is received. We do not have data for all 3 yr before 2001, but
we do for 2007, and 2005 experienced precipitation 34% above the 17-
yr normal and annual grass percent cover 45% above the 17-yr average.
We postulate that the effects from 2005 could drive the 2007 annual
grass percent cover higher than the 17-yr average evenwhile 2007 pre-
cipitation is slightly less than the 17-yr precipitation normal. This as-
sumes that the slightly less than normal precipitation that occurs in
2007 meets the definition of adequate (Pilliod et al., 2017). On a more
localized scale, our model estimates anomalously low annual grass per-
cent cover in northern Nevada in 2012 following a highly productive
2011 for this area. This phenomenon is not necessarily unexpected,
even though a prolific growing season would leave abundant seed for
germination during the subsequent growing season (Kerns and Day,
2017). This is because adequatemoisturemust be present at the correct
time before seeds can germinate. A progressive increase in annual grass
percent cover can be observed in northernNevada from2013 until 2016
(see Fig. 4). This localized areamight serve as a harbinger of high overall
percent cover for the entire study area. In 3 of the 4 highest yr of overall
annual grass percent cover (see Table 5), this localized area also has its
highest annual grass percent cover. In no other year does this geograph-
ical area show the level of invasion it does during 2005, 2011, and 2016
(see Fig. 4; Table 5).

Most of the study area shows annual grass percent cover during
some, if not all, years in our time series. However, some areas are typi-
cally void of substantial annual grass production (e.g., the southwest
corner of Wyoming, much of central Nevada, and east-central Califor-
nia). It is likely that these areas possess characteristics that allow them
to resist annual grass dominance. Chambers et al. (2016) discusses sev-
eral environmental characteristics that drive plant community resis-
tance to exotic annual Brome grass invasion including elevation,
climate, and soils. Our annual grassmodel’s usage of variables converges
with these findingswhere elevation represents the secondmost heavily
used driver (see Table 1), and soil metrics—available water capacity and
soil organic matter—and 30-yr precipitation are used heavily as well.
Other characteristics can contribute to the resistance of annual grass in-
vasion including the presence of intact biotic soil crusts (Condon and
Pyke, 2018), traits of invading plants, interactions between the invaders,
native plant communities (Chambers et al., 2014, 2016), and land use
history (Pyke et al., 2016).

Implications

Annual grasses in the sagebrush ecosystempresent challenges to the
responsible use and management of this ecosystem. The more substan-
tial the annual grass domination, the more fire regimes change and in-
crease the severity and frequency of disturbances, and the more
difficult it becomes tomanage formultiple uses likewildlife habitat, rec-
reation, grazing, and development. Management needs to be able to
identify actions that may alleviate the current cycle of invasive annual
grass species. The time series of maps developed for this study allows
examination of annual grass distribution trends and, through these
trends, supports the understanding that annual grass percent cover ex-
periences spatiotemporal variability in this ecosystem for specific rea-
sons. Understanding the drivers of these dynamics provides land
managers, scientists, and practitioners with the tools needed to better
understand, manage, and use the ecosystem, especially if they under-
stand when and to what degree these drivers are likely to change. The
time series allows longitudinal comparisons with temporally dynamic
exogenous conditions like weather and grazing. Therefore, correlating
annual grass percent cover variability throughout the time series with
Please cite this article as: Boyte, S.P., et al., Validating a Time Series of Annua
org/10.1016/j.rama.2018.09.004
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changing exogenous conditions could help predict future conditions.
The time series also allows comparisonswith spatially endogenous con-
ditions like topography, soil characteristics, and species competition.
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